in

Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms

  • 1.

    Losos JB, Ricklefs RE. Adaptation and diversification on islands. Nature. 2009;457:830–6.

  • 2.

    Wallace AR. On the zoological geography of the Malay archipelago. J Proc Linn Soc. 1860;4:172–84.

    • Google Scholar
  • 3.

    Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA. Island biogeography: taking the long view of nature’s laboratories. Science. 2017;357:eaam8326.

    • PubMed
    • Google Scholar
  • 4.

    MacArthur RH, Wilson EO. The theory of island biogeography. Princeton, New Jersey: Princeton University Press; 1967.

  • 5.

    Helmus MR, Mahler DL, Losos JB. Island biogeography of the anthropocene. Nature. 2014;513:543–6.

  • 6.

    Losos, JB, Ricklefs, RE. The theory of island biogeography revisited princeton. New Jersey: Princeton University Press; 2010.

  • 7.

    Simberloff D. Experimental zoogeography of islands: effects of island size. Ecology. 1976;57:629–48.

    • Google Scholar
  • 8.

    Triantis KA, Guilhaumon F, Whittaker RJ. The island species-area relationship: biology and statistics. J Biogeogr. 2012;39:215–31.

    • Google Scholar
  • 9.

    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.

  • 10.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.

  • 11.

    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.

  • 12.

    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.

  • 13.

    Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

  • 14.

    Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

    • PubMed
    • Google Scholar
  • 15.

    Davison J, Moora M, Öpik M, Ainsaar L, Ducousso M, Hiiesalu I, et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. 2018;12:2211–24.

  • 16.

    Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, et al. Spatial scaling of microbial eukaryote diversity. Nature. 2004;432:747–50.

  • 17.

    Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM. A taxa-area relationship for bacteria. Nature. 2004;432:750–3.

  • 18.

    Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun. 2018;9:2876.

  • 19.

    Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, et al. Larger islands house more bacterial taxa. Science. 2005;308:1884.

  • 20.

    Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett. 2007;10:470–80.

    • PubMed
    • Google Scholar
  • 21.

    Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.

    • PubMed
    • Google Scholar
  • 22.

    Belisle M, Peay KG, Fukami T. Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb Ecol. 2012;63:711–8.

    • PubMed
    • Google Scholar
  • 23.

    Teittinen A, Soininen J. Testing the theory of island biogeography for microorganisms patterns for spring diatoms. Aquat Microb Ecol. 2015;75:239–50.

    • Google Scholar
  • 24.

    Mendenhall CD, Karp DS, Meyer CF, Hadly EA, Daily GC. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature. 2014;509:213–7.

  • 25.

    Stuart YE, Losos JB, Algar AC. The island–mainland species turnover relationship. Proc R Soc B. 2012;279:4071–7.

    • PubMed
    • Google Scholar
  • 26.

    Itescu Y. Are island‐like systems biologically similar to islands? A review of the evidence. Ecography. 2019;42:1298–314.

    • Google Scholar
  • 27.

    Matthews TJ, Guilhaumon F, Triantis KA, Borregaard MK, Whittaker RJ. On the form of species–area relationships in habitat islands and true islands. Glob Ecol Biogeog. 2016;25:847–58.

    • Google Scholar
  • 28.

    Connor EF, McCoy ED. The statistics and biology of the species-area relationship. Am Nat. 1979;113:791–833.

    • Google Scholar
  • 29.

    Williams, CB. Patterns in the balance of nature. New York: Academic Press; 1964.

  • 30.

    Ewers RM, Didham RK. Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev. 2006;81:117–42.

    • PubMed
    • Google Scholar
  • 31.

    Phillips HR, Halley JM, Urbina‐Cardona JN, Purvis A. The effect of fragment area on site‐level biodiversity. Ecography. 2018;41:1220–31.

    • Google Scholar
  • 32.

    Schoereder JH, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSouza O, et al. Should we use proportional sampling for species-area studies? J Biogeogr. 2004;31:1219–26.

    • Google Scholar
  • 33.

    Stevens GC. Dissection of the species-area relationship among wood-boring insects and their host plants. Am Nat. 1986;128:35–46.

    • Google Scholar
  • 34.

    Schrader J, Moeljono S, Keppel G, Kreft H. Plants on small islands revisited: the effects of spatial scale and habitat quality on the species‐area relationship. Ecography. 2019;42:1405–14.

    • Google Scholar
  • 35.

    Shen G, Yu M, Hu XS, Mi X, Ren H, Sun IF, et al. Species–area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology. 2009;90:3033–41.

    • PubMed
    • Google Scholar
  • 36.

    Hu G, Feeley KJ, Wu J, Xu G, Yu M. Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands. Landsc Ecol. 2011;26:1405–17.

    • Google Scholar
  • 37.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.

  • 38.

    White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. New York, NY: Academic Press, Inc.; 1990. p. 315–22.

  • 39.

    Schloss PD. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE. 2009;4:e8230.

  • 40.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

  • 41.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

  • 42.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–6.

  • 43.

    Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. N Phytol. 2010;186:281–5.

    • Google Scholar
  • 44.

    Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.

    • Google Scholar
  • 45.

    Stegen JC, Lin XJ, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:370.

  • 46.

    Chao A, Chiu CH, Jost L. Unifying species diversity, phylogenetic diversity, functional diversity and related similarity and differentiation measures through Hill numbers. Annu Rev Ecol, Evol, Syst. 2014;45:297–324.

    • Google Scholar
  • 47.

    Lichstein JW. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 2007;188:117–13.

    • Google Scholar
  • 48.

    Gröemping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.

    • Google Scholar
  • 49.

    Fisher R, Wilson SK, Sin TM, Lee AC, Langlois TJ. A simple function for full‐subsets multiple regression in ecology with R. Ecol Evol. 2018;8:6104–13.

  • 50.

    Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, et al. Vegan: community ecology package. R package version 2.5-1. https://CRAN.R-project.org/package=vegan (2018).

  • 51.

    Fox J. Structural equation modeling with the sem package in R. Struct Equ Model. 2006;13:465–86.

    • Google Scholar
  • 52.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria; 2018.

  • 53.

    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.

  • 54.

    Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2012;93:930–8.

    • Google Scholar
  • 55.

    Barnard RL, Osborne CA, Firestone MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229–41.

  • 56.

    Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, et al. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA. 2007;104:20404–9.

    • PubMed
    • Google Scholar
  • 57.

    Ranjard L, Dequiedt S, Prévost-Bouré NC, Thioulouse J, Saby NP, et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun. 2013;4:1434.

  • 58.

    Ricklefs RE, Lovette IJ. The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. J Anim Ecol. 1999;68:1142–60.

    • Google Scholar
  • 59.

    Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton, New Jersey: Princeton University Press; 2001.

  • 60.

    Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.

  • 61.

    Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ Microbiol. 2020;22:832–49.

    • PubMed
    • Google Scholar
  • 62.

    Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.

  • 63.

    Norros V, Penttilä R, Suominen M, Ovaskainen O. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos. 2012;121:961–74.

    • Google Scholar
  • 64.

    Adams RI, Miletto M, Taylor JW, Bruns TD. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013;7:1262–73.

  • 65.

    Tisserat N, Kuntz JE. Dispersal gradients of conidia of the butternut canker fungus in a forest during rain. Can J Res. 1983;13:1139–44.

    • Google Scholar
  • 66.

    Liu J, Matthews TJ, Zhong L, Liu J, Wu D, Yu M. Environmental filtering underpins the island species–area relationship in a subtropical anthropogenic archipelago. J Ecol. 2020;108:424–32.

    • CAS
    • Google Scholar
  • 67.

    Wang Y, Bao Y, Yu M, Xu G, Ding P. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake. Divers Distrib. 2010;16:862–73.

    • Google Scholar
  • 68.

    Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol. 2016;14:434–47.

  • 69.

    Roy J, Mazel F, Sosa‐Hernández MA, Dueñas JF, Hempel S, Zinger L, et al. The relative importance of ecological drivers of arbuscular mycorrhizal fungal distribution varies with taxon phylogenetic resolution. N Phytol. 2019;224:936–48.

    • Google Scholar
  • 70.

    Dray S, Pelissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr. 2012;82:257–75.

    • Google Scholar
  • 71.

    Wang P, Li SP, Yang X, Zhou J, Shu W, Jiang L. Mechanisms of soil bacterial and fungal community assembly differ among and within islands. Environ Microbiol. 2020;22:1559–71.

    • PubMed
    • Google Scholar
  • 72.

    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1:e1500052.

  • 73.

    Tong X, Zhang YX, Wang R, Inbar M, Chen XY. Habitat fragmentation alters predator satiation of acorns. J Plant Ecol. 2017;10:67–73.

    • Google Scholar

  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants