in

Isotopic and microbotanical insights into Iron Age agricultural reliance in the Central African rainforest

  • 1.

    Hiernaux, J. Bantu expansion: the evidence from physical anthropology confronted with linguistic and archaeological evidence. J. Afr. Hist. 9, 505–515 (1968).

    Article  Google Scholar 

  • 2.

    Vansina, J. New linguistic evidence and ‘the Bantu expansion’. J. Afr. Hist. 36, 173–195 (1995).

    Article  Google Scholar 

  • 3.

    de Filippo, C., Bostoen, K., Stoneking, M. & Pakendorf, B. Bringing together linguistic and genetic evidence to test the Bantu expansion. Proc. Biol. Sci. 279, 3256–3263 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Li, S., Schlebusch, C. & Jakobsson, M. Genetic variation reveals large-scale population expansion and migration during the expansion of Bantu-speaking peoples. Proc. R. Soc. B Biol. Sci. 281, 20141448 (2014).

    Article  Google Scholar 

  • 5.

    Phillipson, D. W. The Later Prehistory of Eastern and Southern Africa (Heinemann, London, 1977).

    Google Scholar 

  • 6.

    Holden, C. J. Bantu language trees reflect the spread of farming across sub-Saharan Africa: a maximum-parsimony analysis. Proc. Biol. Sci. 269, 793–799 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Bostoen, K. Pearl millet in early Bantu speech communities in Central Africa: a reconsideration of the lexical evidence. Afrika und Übersee 89, 183–213 (2007).

  • 8.

    Russell, T., Silva, F. & Steele, J. Modelling the spread of farming in the Bantu-speaking regions of Africa: an archaeology-based phylogeography. PLoS ONE 9, e87854 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Kahlheber, S., Bostoen, K. & Neumann, K. Early plant cultivation in the Central African rain forest: first millennium BC pearl millet from South Cameroon. J. Afr. Archaeol. 7, 253–272 (2009).

    Article  Google Scholar 

  • 10.

    Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112, 13296–13301 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Bayon, G. et al. The roles of climate and human land-use in the late Holocene rainforest crisis of Central Africa. Earth Planet. Sci. Lett. 505, 30–41 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Ambrose, S. H. & DeNiro, M. J. The isotopic ecology of East African mammals. Oecologia 69, 395–406 (1986).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Ambrose, S. H. Stable carbon and nitrogen isotope analysis of human and animal diet in Africa. J. Hum. Evol. 15, 707–731 (1987).

    Article  Google Scholar 

  • 16.

    Lee-Thorp, J. A., Sealy, J. C. & Morris, A. G. Iin Prehistoric Human Bone: Archaeology at the Molecular Level  (eds Lambert, J. & Grupe, G.) 99–120 (Springer Verlag, Berlin, 1993).

  • 17.

    Dlamini, N., Morris, A. G. & Sealy, J. Carbon isotopes and dental caries as evidence for regional variation in the diets of early farming communities from Katanga, Democratic Republic of the Congo. J. Afr. Archaeol. 14, 135–153 (2016).

    Article  Google Scholar 

  • 18.

    Eggert, M. K. H. et al. Pits, graves and grains: archaeological and archaeobotanical research in southern Cameroon. J. Afr. Archaeol. 4, 273–298 (2006).

    Article  Google Scholar 

  • 19.

    Eggert, M. K. H. In Europa im Geflecht der Welt. Mittelalterliche Migrationen in Globalen Bezügen (eds Borgolte, M., Dücker, J., Müllerburg, M., Predatsch, P. & Schneidmüller, B.) 193–216 (Akademie Verlag, Berlin, 2012).

  • 20.

    Eggert, M. K. H. In The Cambridge World Prehistory, Volume 1: Africa, South and Souheast Asia and the Pacific (eds Renfrew, C. & Bahn, P.) 183–203 (Cambridge University Press, Cambridge, 2014).

  • 21.

    Neumann, K., Bostoen, K., Höhn, A., Kahlheber, S., Ngomanda, A. & Tchiengue, B. First farmers in the Central African rainforest: a view from southern Cameroon. Quat. Int. 249, 53–62 (2012).

  • 22.

    Oslisly, R. et al. Climatic and cultural changes in the west Congo Basin forests over the past 5000 years. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120304 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Oslisly, R. et al. West Central African peoples: survey of radiocarbon dates over the past 5000 years. Radiocarbon 55, 1377–1382 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Oslisly, R., White, L. & de Saulieu, G. In Pour une écologie historique en Afrique Centrale (eds de Saulieu, G., Elouga, M. & Sonké, B.) 121–139 (IRD/AUF, Yaoundé, 2016).

  • 25.

    Bostoen, K. et al. Middle to Late Holocene Paleoclimatic Change and the Early Bantu Expansion in the rain forests of Western Central Africa. Curr. Anthropol. 56, 354–384 (2015).

    Article  Google Scholar 

  • 26.

    Wotzka, H.-P. In Trees, Grasses and Crops. People and Plants in Sub-Saharan Africa and Beyond (eds Eichhorn, B. & Höhn, A.) 407–429 (Dr. Rudolf Habelt GmbH, 2019).

  • 27.

    Wotzka, H.-P. In Auf dem Holzweg … Eine Würdigung für Ursula Tegtmeier. (eds Meurers-Balke, J., Zerl, T. & Gerlach, R.) 269–284 (Propylaeum, 2019).

  • 28.

    Kahlheber, S., Eggert, M. K. H., Seidensticker, D. & Wotzka, H.-P. Pearl millet and other plant remains from the Early Iron Age Site of Boso-Njafo (Inner Congo Basin, Democratic Republic of the Congo). Afr. Archaeol. Rev. 31, 479–512 (2014).

    Article  Google Scholar 

  • 29.

    Schwartz, D. Assèchement climatique vers 3000 B.P. et expansion Bantu en Afrique centrale atlantique: quelques réflexions. Bull. Soc. Géol. Fr. 163, 353–361 (1992).

    Google Scholar 

  • 30.

    Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).

    Article  Google Scholar 

  • 31.

    Mercader, J., Garralda, M. D., Pearson, O. M. & Bailey, R. C. Eight hundred-year-old human remains from the Ituri tropical forest, Democratic Republic of Congo: the rock shelter site of Matangai Turu Northwest. Am. J. Phys. Anthropol. 115, 24–37 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).

    Article  Google Scholar 

  • 33.

    Kellner, C. M. & Schoeninger, M. J. A simple carbon isotope model for reconstructing prehistoric human diet. Am. J. Phys. Anthropol. 133, 1112–1127 (2007).

    PubMed  Article  Google Scholar 

  • 34.

    Roberts, P. et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).

    PubMed  Article  Google Scholar 

  • 36.

    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

    Article  Google Scholar 

  • 37.

    Verhegghen, A., Mayaux, P., Wasseige, Cde & Defourny, P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 9, 5061–5079 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Hart, T. B., Hart, J. A., Dechamps, R., Fournier, M. & Ataholo, M. C. Changes in forest composition over the last 4000 years in the Ituri basin, Zaire. In The Biodiversity of African Plants: Proceedings XIVth AETFAT Congress 22–27 August 1994, Wageningen, The Netherlands (eds van der Maesen, L. J. G., van der Burgt, X. M. & van Medenbach de Rooy, J. M.) 545–560 (Springer Netherlands, 1996).

  • 39.

    Mercader, J. et al. Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo. Quat. Res. 54, 102–112 (2000).

    Article  Google Scholar 

  • 40.

    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48, 625–639 (1984).

    CAS  Article  Google Scholar 

  • 41.

    O’Connell, T. C., Kneale, C. J., Tasevska, N. & Kuhnle, G. G. C. The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am. J. Phys. Anthropol. 149, 426–434 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13 C, 18 O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).

  • 43.

    Sponheimer, M. & Lee-Thorp, J. A. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126, 153–157 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806 (1985).

    CAS  Article  Google Scholar 

  • 45.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    Article  Google Scholar 

  • 46.

    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Article  Google Scholar 

  • 47.

    Sealy, J., Johnson, M., Richards, M. & Nehlich, O. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J. Archaeol. Sci. 47, 64–69 (2014).

    CAS  Article  Google Scholar 

  • 48.

    Harrington, N. R. The life habits of polypterus. Am. Nat. 33, 721–728 (1899).

    Article  Google Scholar 

  • 49.

    Bocherens, H. & Drucker, D. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 46–53 (2003).

    Article  Google Scholar 

  • 50.

    Cerling, T. E., Harris, J. M., Ambrose, S. H., Leakey, M. G. & Solounias, N. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. J. Hum. Evol. 33, 635–650 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    D’Andrea, A. C., Logan, A. L. & Watson, D. J. Oil palm and prehistoric subsistence in tropical West Africa. J. Afr. Archaeol. 4, 195–222 (2006).

    Article  Google Scholar 

  • 53.

    Mbida, C. M., Van Neer, W., Doutrelepont, H. & Vrydaghs, L. Evidence for banana cultivation and animal husbandry during the first millennium bc in the forest of Southern Cameroon. J. Archaeol. Sci. 27, 151–162 (2000).

    Article  Google Scholar 

  • 54.

    Soto, M. et al. Structural characterization and decontamination of dental calculus for ancient starch research. Archaeol. Anthropol. Sci. 11, 4847–4872 (2019).

    Article  Google Scholar 

  • 55.

    Mercader, J. et al. Morphometrics of starch granules from sub-saharan plants and the taxonomic identification of ancient starch. Front. Earth Sci. 6, 146 https://doi.org/10.3389/feart.2018.00146 (2018).

  • 56.

    Höhn, A., Kahlheber, S., Neumann, K. & Schweizer, A. In Dynamics of Forest Ecosystems in Central Africa during the Holocene: Past-Present-Future (ed. Runge, J.) 29–41 (Taylor and Francis, London, 2007).

  • 57.

    Lupo, K. D. et al. An elusive record exposed: radiocarbon chronology of late Holocene human settlement in the northern Congo Basin, southern Central African Republic. Azania. Archaeol. Res. Afr. 53, 209–227 (2018).

    Google Scholar 

  • 58.

    Schmitt, D. N. et al. An elusive record further exposed: additional excavations and chronometric data on human settlement in the northern Congo Basin rain forest, southern Central African Republic. Azania.: Archaeological Res. Afr. 54, 55–74 (2019).

    Article  Google Scholar 

  • 59.

    Eichhorn, B. In Trees, Grasses and Crops. People and Plants in Sub-Saharan Africa and Beyond (eds Eichhorn, B. & Höhn, A.) 109–117 (Dr. Rudolf Habelt GmbH, 2019).

  • 60.

    Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Palaeobot. Palynol. 99, 157–187 (1998).

    Article  Google Scholar 

  • 61.

    Vincens, A. et al. Forest response to climate changes in Atlantic Equatorial Africa during the last 4000 years BP and inheritance on the modern landscapes. J. Biogeogr. 26, 879–885 (1999).

  • 62.

    Mercader, J., Rovira, S. & Gómez-Ramos, P. Shared technologies: forager-farmer interaction and ancient iron metallurgy in the Ituri rainforest, Democratic Republic of Congo. Azania. Archaeol. Res. Afr. 35, 107–122 (2000).

    Google Scholar 

  • 63.

    Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).

  • 64.

    Mercader, J., Martı́, R., González, I. J., Sánchez, A. & Garcı́a, P. Archaeological site formation in rain forests: insights from the Ituri Rock Shelters, Congo. J. Archaeol. Sci. 30, 45–65 (2003).

    Article  Google Scholar 

  • 65.

    Patin, E. et al. Inferring the demographic history of African farmers and pygmy hunter-gatherers using a multilocus resequencing data set. PLoS Genet. 5, e1000448 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Roberts, P. et al. Late Pleistocene to Holocene human palaeoecology in the tropical environments of coastal eastern Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109438 (2019).

  • 68.

    Malhi, Y. & Phillips, O. L. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 311–329 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Maslin, M. Atmosphere. Ecological versus climatic thresholds. Science 306, 2197–2198 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Cairns, J. E. et al. Adapting maize production to climate change in sub-Saharan Africa. Food Security 5, 345–360 (2013).

    Article  Google Scholar 

  • 73.

    Masuka, B. et al. Gains in maize genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci. 57, 168–179 (2016).

    Article  Google Scholar 

  • 74.

    Bharucha, Z. & Pretty, J. The roles and values of wild foods in agricultural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2913–2926 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Rasmussen, L. V., Watkins, C. & Agrawal, A. Forest contributions to livelihoods in changing agriculture-forest landscapes. Policy Econ. 84, 1–8 (2017).

    Article  Google Scholar 

  • 76.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    PubMed  Article  Google Scholar 

  • 77.

    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).

    Article  Google Scholar 

  • 78.

    Nogherotto, R., Coppola, E., Giorgi, F. & Mariotti, L. Impact of Congo Basin deforestation on the African monsoon. Atmos. Sci. Lett. 14, 45–51 (2013).

    Article  Google Scholar 

  • 79.

    Brooks, E. G. E. In The Status and Distribution of Freshwater Biodiversity in Central Africa (eds Brooks, E. G. E., Allen, D. J. & Darwall, W. R. T.) 110–121 (International Union for Conservation of Nature (IUCN), 2011).

  • 80.

    Wotzka, H.-P. Studien zur Archäologie des zentralafrikanischen Regenwaldes: die Keramik des inneren Zaïre-Beckens und ihre Stellung im Kontext der Bantu-Expansion (Heinrich-Barth-Institut, 1995).

  • 81.

    Eggert, M. K. H. Imbonga and Batalimo: ceramic evidence for early settlement of the equatorial rain forest. Afr. Archaeol. Rev. 5, 129–145 (1987).

    Article  Google Scholar 

  • 82.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Brock, F., Higham, T. & Ramsey, C. B. Comments on the use of Ezee-FiltersTM and ultrafilters at Orau. Radiocarbon 55, 211–212 (2013).

    CAS  Article  Google Scholar 

  • 84.

    Lee-Thorp, J. A. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Sponheimer, M. et al. Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. J. Hum. Evol. 48, 301–312 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Dunbar, E., Cook, G. T., Naysmith, P., Tripney, B. G. & Xu, S. AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC). Radiocarb. Dating Lab. Radiocarb. 58, 9–23 (2016).

    CAS  Google Scholar 

  • 87.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  • 88.

    Reimer, P. J. et al. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution