in

Landscape configuration and habitat complexity shape arthropod assemblage in urban parks

  • 1.

    Oke, T. R. City size and the urban heat island. Atmos. Environ. 1967(7), 769–779 (1973).

    ADS  Article  Google Scholar 

  • 2.

    Zhou, B., Rybski, D. & Kropp, J. P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  • 3.

    Fenoglio, M. S., Rossetti, M. R., Videla, M. & Baselga, A. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).

    Article  Google Scholar 

  • 4.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  • 5.

    Philpott, S. M. et al. Local and landscape drivers of carabid activity, species richness, and traits in urban gardens in coastal California. Insects 10, 112 (2019).

    PubMed Central  Article  Google Scholar 

  • 6.

    Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).

    Article  Google Scholar 

  • 7.

    Alaruikka, D., Kotze, D. J., Matveinen, K. & Niemelä, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 6, 195–206 (2002).

    Article  Google Scholar 

  • 8.

    Burkman, C. E. & Gardiner, M. M. Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst. 18, 793–818 (2015).

    Article  Google Scholar 

  • 9.

    Kaltsas, D., Panayiotou, E., Chatzaki, M. & Mylonas, M. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur. J. Entomol. 111, 59 (2014).

    Article  Google Scholar 

  • 10.

    Magura, T., Horváth, R. & Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol. 25, 621–629 (2010).

    Article  Google Scholar 

  • 11.

    Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Urban Ecology 14, 455–472 (2008).

    Article  Google Scholar 

  • 12.

    Liu, K.-L., Peng, M.-H., Hung, Y.-C. & Neoh, K.-B. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst. 22, 643–656 (2019).

    Article  Google Scholar 

  • 13.

    Brudvig, L. A., Damschen, E. I., Tewksbury, J. J., Haddad, N. M. & Levey, D. J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc. Natl. Acad. Sci. USA 106, 9328–9332 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274. https://doi.org/10.1016/S0169-2046(00)00122-5 (2001).

    Article  Google Scholar 

  • 15.

    Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).

    Article  Google Scholar 

  • 16.

    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).

    Article  Google Scholar 

  • 17.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, Princeton, 2001).

    Google Scholar 

  • 18.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article  Google Scholar 

  • 19.

    Burkman, C. E. & Gardiner, M. M. Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol. Control 75, 58–67 (2014).

    Article  Google Scholar 

  • 20.

    Burks, J. M. & Philpott, S. M. Local and landscape drivers of parasitoid abundance, richness, and composition in urban gardens. Environ. Entomol. 46, 201–209 (2017).

    PubMed  Article  Google Scholar 

  • 21.

    Magura, T., Lövei, G. L. & Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 8, 1–9 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Corcos, D. et al. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14, e0214068 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7, 1221–1244 (1998).

    Article  Google Scholar 

  • 24.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 25.

    Hölldobler, B. & Wilson, E. O. Journey to the Ants: A Story of Scientific Exploration (Harvard University Press, Cambridge, 1994).

    Google Scholar 

  • 26.

    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).

    Article  Google Scholar 

  • 27.

    Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Kevan, P. G. & Baker, H. G. Insects as flower vistors and pollinators. Ann. Rev. Entomol. 28, 407–453 (1983).

    Article  Google Scholar 

  • 29.

    Haddad, C. R., Louw, S. V. & Dippenaar-Schoeman, A. S. An assessment of the biological control potential of Heliophanus pistaciae (Araneae: Salticidae) on Nysius natalensis (Hemiptera: Lygaeidae), a pest of pistachio nuts. Biol. Control 31, 83–90 (2004).

    Article  Google Scholar 

  • 30.

    Cotes, B. et al. Spider communities and biological control in native habitats surrounding greenhouses. Insects 9, 33 (2018).

    PubMed Central  Article  Google Scholar 

  • 31.

    Michalko, R. & Pekar, S. Different hunting strategies of generalist predators result in functional differences. Oecologia 181, 1187–1197. https://doi.org/10.1007/s00442-016-3631-4 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Michalko, R., Pekár, S., Dul’a, M., Entling, M. H. & McGeoch, M. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Glob. Ecol. Biogeogr. 28, 1366–1378. https://doi.org/10.1111/geb.12927 (2019).

    Article  Google Scholar 

  • 33.

    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104, 30 (2017).

    Article  CAS  Google Scholar 

  • 34.

    Meineke, E. K., Dunn, R. R., Sexton, J. O. & Frank, S. D. Urban warming drives insect pest abundance on street trees. PLoS ONE 8, e59687 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Christie, F. J. & Hochuli, D. F. Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect?. Ecol. Soc. 10, 10 (2005).

    Article  Google Scholar 

  • 36.

    Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, Cambridge, 1994).

    Google Scholar 

  • 37.

    Lin, C. Systematic and Zoogeographic Studies on the Ant Subfamily Myrmicinae in Taiwan (Hymenoptera: Formicidae), Ph. D. Dissertation, National Taiwan University Press, Taiwan (1998).

  • 38.

    Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects (Thompson Brooks/Cole Belmont, CA, 2005).

    Google Scholar 

  • 39.

    Timms, L. L. et al. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Diver. 6, 453–462 (2013).

    Article  Google Scholar 

  • 40.

    Blanche, K. R., Andersen, A. N. & Ludwig, J. A. Rainfall-contingent detection of fire impacts: responses of beetles to experimental fire regimes. Ecol. Appl. 11, 86–96 (2001).

    Article  Google Scholar 

  • 41.

    Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently?. Divers. Distrib. 11, 73–82 (2005).

    Article  Google Scholar 

  • 42.

    Grimbacher, P. S., Catterall, C. P. & Kitching, R. L. Detecting the effects of environmental change above the species level with beetles in a fragmented tropical rainforest landscape. Ecol. Entomol. 33, 66–79 (2008).

    Google Scholar 

  • 43.

    Gardiner, M. et al. Landscape composition influences patterns of native and exotic lady beetle abundance. Divers. Distrib. 15, 554–564 (2009).

    Article  Google Scholar 

  • 44.

    Team, Q. D. QGIS Geographic Information System.Open Source Geospatial Foundation Project (2020).

  • 45.

    Barton, K. Package ‘MuMIn’. R package version 1(40), 4 (2018).

    Google Scholar 

  • 46.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 

  • 47.

    Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J. & Slade, E. M. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?. Biol. Conserv. 194, 176–183 (2016).

    Article  Google Scholar 

  • 48.

    Neoh, K.-B. et al. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: a bi-taxa comparison. PLoS ONE 12, e0174388 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Santos, M. N., Delabie, J. H. C. & Queiroz, J. M. Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).

    Article  Google Scholar 

  • 50.

    Carpintero, S. & Reyes-López, J. Effect of park age, size, shape and isolation on ant assemblages in two cities of southern Spain. Entomol. Sci. 17, 41–51 (2014).

    Article  Google Scholar 

  • 51.

    Tsai, C.-Y. Diversity, Community Structure and Morphological Patterns of Ground-Dwelling Ant in Urban-Rural Interface Master thesis, National Chung Hsing University (2019).

  • 52.

    Hogg, B. N. & Daane, K. M. Aerial dispersal ability does not drive spider success in a crop landscape. Ecol. Entomol. 43, 683–694 (2018).

    Article  Google Scholar 

  • 53.

    Morse, D. H. Some determinants of dispersal by crab spiderlings. Ecology 74, 427–432 (1993).

    ADS  Article  Google Scholar 

  • 54.

    Bristowe, W. S. The distribution and dispersal of spiders. Proc. Zool. Soc. Lond. 99, 633–657 (1929).

    Article  Google Scholar 

  • 55.

    de Souza, D. R., dos Santos, S. G., Munhae, C. D. & Morini, M. S. D. Diversity of epigeal ants (Hymenoptera: Formicidae) in urban areas of Alto Tiete. Sociobiology 59, 703–717 (2014).

    Google Scholar 

  • 56.

    Pećarević, M., Danoff-Burg, J. & Dunn, R. R. Biodiversity on broadway – enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS ONE 5, e13222 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).

    Article  Google Scholar 

  • 58.

    Otoshi, M. D., Bichier, P. & Philpott, S. M. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ. Entomol. 44, 1043–1051 (2015).

    PubMed  Article  Google Scholar 

  • 59.

    Lacasella, F. et al. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest–grassland ecotone. Biodivers. Conserv. 24, 447–465 (2015).

    Article  Google Scholar 

  • 60.

    Boetzl, F. A., Schneider, G. & Krauss, J. Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. J. Insect Conserv. 20, 49–57 (2016).

    Article  Google Scholar 

  • 61.

    Fusser, M. S. et al. Interactive effects of local and landscape factors on farmland carabids. Agric. For. Entomol. 20, 549–557 (2018).

    Article  Google Scholar 

  • 62.

    Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).

    Article  Google Scholar 

  • 63.

    Magura, T., Lövei, G. L. & Tóthmérész, B. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7, 1009–1017 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Delgado, J. D., Arroyo, N. L., Arévalo, J. R. & Fernández-Palacios, J. M. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc. Urban Plan. 81, 328–340 (2007).

    Article  Google Scholar 

  • 65.

    Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).

    Article  Google Scholar 

  • 66.

    Soga, M., Kanno, N., Yamaura, Y. & Koike, S. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect Conserv. 17, 421–428 (2013).

    Article  Google Scholar 

  • 67.

    Schroeder, L. M. Population levels and flight phenology of bark beetle predators in stands with and without previous infestations of the bark beetle Tomicus piniperda. For. Ecol. Manag. 123, 31–40 (1999).

    Article  Google Scholar 

  • 68.

    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).

    Article  Google Scholar 

  • 69.

    Ivanov, K. & Keiper, J. Ant (Hymenoptera: Formicidae) diversity and community composition along sharp urban forest edges. Biodivers. Conserv. 19, 3917–3933 (2010).

    Article  Google Scholar 

  • 70.

    Molnár, T., Magura, T., Tóthmérész, B. & Elek, Z. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37, 297–300 (2001).

    Article  Google Scholar 

  • 71.

    Rodrigues, E. N. L., Mendonça, M. D. S. & Costa-Schmidt, L. E. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod 8, 123–133 (2014).

    Article  Google Scholar 

  • 72.

    Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol. Appl. 10, 1230–1248 (2000).

    Article  Google Scholar 

  • 73.

    Suarez, A. V., Bolger, D. T. & Case, T. J. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79, 2041–2056 (1998).

    Article  Google Scholar 

  • 74.

    Bolger, D. T. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biol. Conserv. 136, 295–305 (2007).

    Article  Google Scholar 

  • 75.

    Holway, D. A. Edge effects of an invasive species across a natural ecological boundary. Biol. Conserv. 121, 561–567 (2005).

    Article  Google Scholar 

  • 76.

    Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).

    Article  Google Scholar 

  • 77.

    MacGregor-Fors, I. et al. City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7, 146 (2016).

    Article  Google Scholar 

  • 78.

    Nagy, D. D., Magura, T., Horváth, R., Debnár, Z. & Tóthmérész, B. Arthropod assemblages and functional responses along an urbanization gradient: a trait-based multi-taxa approach. Urban For. Urban Greece 30, 157–168 (2018).

    Article  Google Scholar 

  • 79.

    Andersen, A. N. Ants: Standard Methods for Measuring and Monitoring Biodiversity 25–34 (Smithsonian Institution Press, Washington, DC, 2000).

    Google Scholar 

  • 80.

    Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).

    Article  Google Scholar 

  • 81.

    Kyrö, K. et al. Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. Urban For. Urban Greece. 29, 122–130 (2018).

    Article  Google Scholar 

  • 82.

    Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M. & Chey, V. K. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Entomol. Res. B 90, 475–496 (2000).

    CAS  Article  Google Scholar 

  • 83.

    Robinson, W. H. Urban Insects and Arachnids: A Handbook of Urban Entomology (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  • 84.

    Tsafack, N. et al. Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ 6, e6197 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Magura, T., Tóthmérész, B. & Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 14, 475–491 (2005).

    Article  Google Scholar 

  • 86.

    Koivula, M., Punttila, P., Haila, Y. & Nicnielii, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424–435 (1999).

    Article  Google Scholar 

  • 87.

    Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27, 981–1009 (2018).

    Article  Google Scholar 

  • 88.

    Lowe, E. C., Wilder, S. M. & Hochuli, D. F. Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?. Urban Ecosyst. 19, 705–720 (2016).

    Article  Google Scholar 

  • 89.

    Meineke, E. K., Holmquist, A. J., Wimp, G. M. & Frank, S. D. Changes in spider community composition are associated with urban temperature, not herbivore abundance. J. Urban Ecol. 3, juv010 (2017).

    Article  Google Scholar 

  • 90.

    Huseynov, E. F. Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). Eur. J. Entomol. 102, 797–799 (2005).

    Article  Google Scholar 

  • 91.

    Johnson, S. R. Use of coleopteran prey by Phidippus audax (Araneae, Salticidae) in tallgrass prairie wetlands. J. Arachnol. 24, 39–42 (1996).

    Google Scholar 

  • 92.

    Allan, R. A. & Elgar, M. A. Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Aust. J. Zool. 49, 129–137 (2001).

    Article  Google Scholar 

  • 93.

    Touyama, Y., Ihara, Y. & Ito, F. Argentine ant infestation affects the abundance of the native myrmecophagic jumping spider Siler cupreus Simon in Japan. Insectes Soc. 55, 144–146 (2008).

    Article  Google Scholar 

  • 94.

    Hogg, B. N. & Daane, K. M. Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. Ecol. Entomol. 40, 69–77 (2015).

    Article  Google Scholar 

  • 95.

    Marino, P. C. & Landis, D. A. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl. 6, 276–284 (1996).

    Article  Google Scholar 

  • 96.

    Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607 (2009).

    Article  Google Scholar 

  • 97.

    Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20 (2019).

    Article  Google Scholar 

  • 98.

    Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B 278, 2946–2953 (2011).

    PubMed  Article  Google Scholar 

  • 99.

    Philpott, S. M. & Bichier, P. Local and landscape drivers of predation services in urban gardens. Ecol. Appl. 27, 966–976 (2017).

    PubMed  Article  Google Scholar 

  • 100.

    Eötvös, C. B., Lövei, G. L. & Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 11, 97 (2020).

    PubMed Central  Article  PubMed  Google Scholar 

  • 101.

    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).

    Article  Google Scholar 

  • 102.

    Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 103.

    Croci, S., Butet, A., Georges, A., Aguejdad, R. & Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc. Ecol. 23, 1171–1186 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment