in

Large freshwater phages with the potential to augment aerobic methane oxidation

  • 1.

    Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    CAS  PubMed  Google Scholar 

  • 2.

    Al-Shayeb, B. et al. Clades of huge phage from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741–741 (2003).

    CAS  PubMed  Google Scholar 

  • 4.

    Sharon, I. et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 461, 258–262 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    CAS  PubMed  Google Scholar 

  • 6.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).

    CAS  PubMed  Google Scholar 

  • 8.

    Cicerone, R. J. & Oremland, R. S. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2, 299–327 (1988).

    CAS  Google Scholar 

  • 9.

    Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).

    CAS  PubMed  Google Scholar 

  • 10.

    Op den Camp, H. J. M. et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1, 293–306 (2009).

    CAS  PubMed  Google Scholar 

  • 11.

    Sirajuddin, S. & Rosenzweig, A. C. Enzymatic oxidation of methane. Biochemistry 54, 2283–2294 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    CAS  PubMed  Google Scholar 

  • 13.

    Semrau, J. D., DiSpirito, A. A. & Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 34, 496–531 (2010).

    CAS  PubMed  Google Scholar 

  • 14.

    Lieberman, R. L. & Rosenzweig, A. C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004).

    CAS  PubMed  Google Scholar 

  • 15.

    Stolyar, S., Costello, A. M., Peeples, T. L. & Lidstrom, M. E. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145, 1235–1244 (1999).

    CAS  PubMed  Google Scholar 

  • 16.

    Mayr, M. J., Zimmermann, M., Dey, J., Wehrli, B. & Bürgmann, H. Lake mixing regime selects methane-oxidation kinetics of the methanotroph assemblage. Biogeosciences https://doi.org/10.5194/bg-2019-482 (2020).

  • 17.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18, GB4009 (2004).

    Google Scholar 

  • 18.

    Falz, K. Z. et al. Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl. Environ. Microbiol. 65, 2402–2408 (1999).

    CAS  Google Scholar 

  • 19.

    Linz, A. M. et al. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 6, e6075 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Arriaga, D. et al. The co-importance of physical mixing and biogeochemical consumption in controlling water cap oxygen levels in Base Mine Lake. Appl. Geochem. 111, 104442 (2019).

    CAS  Google Scholar 

  • 21.

    Risacher, F. F. et al. The interplay of methane and ammonia as key oxygen consuming constituents in early stage development of Base Mine Lake, the first demonstration oil sands pit lake. Appl. Geochem. 93, 49–59 (2018).

    CAS  Google Scholar 

  • 22.

    Mori, J. F. et al. Putative mixotrophic nitrifying–denitrifying Gammaproteobacteria implicated in nitrogen cycling within the ammonia/oxygen transition zone of an oil sands pit lake. Front. Microbiol. 10, 2435 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Slater, G. F. et al. Methane fluxes and consumption in an oil sands tailings end pit lake. American Geophysical Union Fall Meeting 2017 abstr. B43B-2130 (2017).

  • 24.

    Hoefman, S. et al. Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int. J. Syst. Evol. Microbiol. 64, 2100–2107 (2014).

    CAS  PubMed  Google Scholar 

  • 25.

    An, D. et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ. Sci. Technol. 47, 10708–10717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Saidi-Mehrabad, A. et al. Methanotrophic bacteria in oil sands tailings ponds of northern Alberta. ISME J. 7, 908–921 (2013).

    CAS  PubMed  Google Scholar 

  • 27.

    Tan, B. et al. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J. 9, 2028–2045 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Rochman, F. F. et al. Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond. Front. Microbiol. 8, 1845 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Liew, E. F., Tong, D., Coleman, N. V. & Holmes, A. J. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology 160, 1267–1277 (2014).

    CAS  PubMed  Google Scholar 

  • 30.

    Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).

    CAS  PubMed  Google Scholar 

  • 33.

    Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    CAS  PubMed  Google Scholar 

  • 34.

    Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).

    CAS  PubMed  Google Scholar 

  • 35.

    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Tyutikov, F. M., Bespalova, I. A., Rebentish, B. A., Aleksandrushkina, N. N. & Krivisky, A. S. Bacteriophages of methanotrophic bacteria. J. Bacteriol. 144, 375–381 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Tyutikov, F. M. et al. Bacteriophages of methanotrophs isolated from fish. Appl. Environ. Microbiol. 46, 917–924 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    CAS  PubMed  Google Scholar 

  • 40.

    Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Ro, S. Y. et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat. Commun. 10, 2675 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Ro, S. Y. et al. From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J. Biol. Chem. 293, 10457–10465 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Lee, J. Y., Li, Z. & Miller, E. S. Vibrio phage KVP40 encodes a functional NAD+ salvage pathway. J. Bacteriol. 199, e00855-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Stolyar, S., Franke, M. & Lidstrom, M. E. Expression of individual copies of Methylococcus capsulatus bath particulate methane monooxygenase genes. J. Bacteriol. 183, 1810–1812 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Erikstad, H.-A., Jensen, S., Keen, T. J. & Birkeland, N.-K. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles 16, 405–409 (2012).

    CAS  PubMed  Google Scholar 

  • 46.

    Berube, P. M., Samudrala, R. & Stahl, D. A. Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J. Bacteriol. 189, 3935–3944 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Günthel, M. et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 10, 5497 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Whaley-Martin, K. et al. The potential role of Halothiobacillus spp. in sulfur oxidation and acid generation in circum-neutral mine tailings reservoirs. Front. Microbiol. 10, 297 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Bushnell, B. BBTools: a suite of fast, multithreaded bioinformatics tools designed for analysis of DNA and RNA sequence data (Joint Genome Institute, 2018); https://jgi.doe.gov/data-and-tools/bbtools

  • 52.

    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Google Scholar 

  • 56.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).

    CAS  PubMed  Google Scholar 

  • 59.

    Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    CAS  PubMed  Google Scholar 

  • 62.

    Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).

    Google Scholar 

  • 63.

    Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    CAS  PubMed  Google Scholar 

  • 65.

    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. In 9th Annual Genomics of Energy & Environment Meeting (2014).

  • 67.

    Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Chen, L.-X. et al. Candidate phyla radiation roizmanbacteria from hot springs have novel and unexpectedly abundant CRISPR-Cas systems. Front. Microbiol. 10, 928 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).

    CAS  PubMed  Google Scholar 

  • 71.

    Zhu, J. et al. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res. 90, 203–215 (2016).

    CAS  PubMed  Google Scholar 

  • 72.

    Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).

    Google Scholar 

  • 73.

    Méheust, R., Burstein, D., Castelle, C. J. & Banfield, J. F. The distinction of CPR bacteria from other bacteria based on protein family content. Nat. Commun. 10, 4173 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS  PubMed  Google Scholar 

  • 75.

    Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment. Nat. Methods 9, 173–175 (2011).

    PubMed  Google Scholar 

  • 77.

    Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Google Scholar 

  • 79.

    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  • 81.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  • 82.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 84.

    Olm, M. R. et al. InStrain enables population genomic analysis from metagenomic data and rigorous detection of identical microbial strains. Preprint at https://doi.org/10.1101/2020.01.22.915579 (2020).


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes