in

Larval pesticide exposure impacts monarch butterfly performance

  • 1.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed  Google Scholar 

  • 2.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    PubMed  Google Scholar 

  • 3.

    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Ann. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Google Scholar 

  • 4.

    Botías, C. et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49, 12731–12740 (2015).

    ADS  PubMed  Google Scholar 

  • 5.

    Botías, C., David, A., Hill, E. M. & Goulson, D. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci. Tot. Environ. 566, 269–278 (2016).

    Google Scholar 

  • 6.

    Long, E. Y. & Krupke, C. H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7, 11629 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Mogren, C. L. & Lundgren, J. G. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci. Rep. 6, 29608 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey-bee health near corn crops. Science 356, 1395–1397 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Wood, T. J., Kaplan, I., Zhang, Y. & Szendrei, Z. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proc. R. Soc. B 286, 20190989 (2019).

    CAS  PubMed  Google Scholar 

  • 10.

    Douglas, M. R. & Tooker, J. F. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ. Sci. Technol. 49, 5088–5097 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS One 14, e0220029 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Gilburn, A. S. et al. Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ 3, e1402 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Forister, M. L. et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett. 12, 20160475 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS One 14, e0216270 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Braak, N., Neve, R., Jones, A. K., Gibbs, M. & Breuker, C. J. The effects of insecticides on butterflies: A review. Environ. Pollut. 242, 507–518 (2018).

    CAS  PubMed  Google Scholar 

  • 17.

    Mulé, R., Sabella, G., Robba, L. & Manachini, B. Systematic review of the effects of chemical insecticides on four common butterfly families. Front. Environ. Sci. 5, 32 (2017).

    Google Scholar 

  • 18.

    Russell, C. & Schultz, C. B. Effects of grass-specific herbicides on butterflies: An experimental investigation to advance conservation efforts. J. Insect Conserv. 14, 53–63 (2009).

    Google Scholar 

  • 19.

    Bohnenblust, E., Egan, J. F., Mortensen, D. & Tooker, J. Direct and indirect effects of the synthetic-auxin herbicide dicamba on two lepidopteran species. Environ. Entomol. 42, 586–594 (2013).

    CAS  PubMed  Google Scholar 

  • 20.

    Hahn, M., Geisthardt, M. & Bruhl, C. A. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars. Environ. Toxicol. Chem. 33, 2633–2638 (2014).

    CAS  PubMed  Google Scholar 

  • 21.

    Stark, J. D., Chen, X. D. & Johnson, C. Effects of herbicides on Behr’s Metalmark butterfly, a surrogate species for the endangered butterfly, Lange’s Metalmark. Environ. Pollut. 164, 24–27 (2012).

    CAS  PubMed  Google Scholar 

  • 22.

    Eliyahu, D., Applebaum, S. W. & Rafaeli, A. Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pestic. Biochem. Physiol. 77, 75–81 (2003).

    CAS  Google Scholar 

  • 23.

    Srivastava, K., Sharma, S., Sharma, D. & Kumar, R. Effect of fungicides on growth and development of Spodoptera litura. Int. J. Life Sci. Sci. Res. 3, 905–908 (2017).

    Google Scholar 

  • 24.

    Nicodemo, D. et al. Pyraclostrobin impairs energetic mitochondrial metabolism and productive performance of silkworm (Lepidoptera: Bombycidae) caterpillars. J. Econ. Entomol. 111, 1369 (2018).

    PubMed  Google Scholar 

  • 25.

    Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297 (1993).

    CAS  Google Scholar 

  • 26.

    Pilling, E. D., Bromley-Challenor, K. A. C., Walker, C. H. & Jepson, P. C. Mechanism of synergism between the pyrethroid insecticide λ-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L). Pestic. Biochem. Physiol. 51, 1–11 (1995).

    CAS  Google Scholar 

  • 27.

    Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 41, 312–331 (2010).

    CAS  Google Scholar 

  • 28.

    Wade, A., Lin, C. H., Kurkul, C., Regan, E. & Johnson, R. M. Combined toxicity of insecticides and fungicides applied to California almond orchards to honey bee larvae and adults. Insects 10, 20 (2019).

    PubMed Central  Google Scholar 

  • 29.

    Lichtenstein, E. P., Liang, T. T. & Anderegg, B. N. Synergism of insecticides by herbicides. Science 181, 847–849 (1973).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    James, D. G. A neonicotinoid insecticide at a rate found in nectar reduces longevity but not oogenesis in monarch butterflies, Danaus plexippus (L.). (Lepidoptera: Nymphalidae). Insects 10, 276 (2019).

    PubMed Central  Google Scholar 

  • 31.

    Sinha, S. N., Lakhani, K. H. & Davis, B. N. K. Studies on the toxicity of insecticidal drift to the first instar larvae of the large white butterfly Pieris brassicae (Lepidoptera: Pieridae). Ann. Appl. Biol. 116, 27–41 (1990).

    CAS  Google Scholar 

  • 32.

    Davis, B. N. K., Lakhani, K. H. & Yates, T. J. The hazards of insecticides to butterflies of field margins. Agric. Ecosyst. Environ. 36, 151–161 (1991).

    CAS  Google Scholar 

  • 33.

    Çilgi, T. & Jepson, P. C. The risks posed by deltamethrin drift to hedgerow butterflies. Environ. Pollut. 87, 1–9 (1995).

    PubMed  Google Scholar 

  • 34.

    Whitehorn, P. R., Norville, G., Gilburn, A. & Goulson, D. Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ 6, e4772 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Belsky, J. & Joshi, N. K. Assessing role of major drivers in recent decline of monarch butterfly population in North America. Front. Environ. Sci. 6, 86 (2018).

    Google Scholar 

  • 37.

    Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Ann. Rev. Entomol. 63, 277–302 (2018).

    CAS  Google Scholar 

  • 38.

    Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).

    Google Scholar 

  • 39.

    Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Div. 6, 135–144 (2013).

    Google Scholar 

  • 40.

    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open. Sci. 4, 170760 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).

    ADS  Google Scholar 

  • 42.

    Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography 41, 278–290 (2018).

    Google Scholar 

  • 43.

    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25, 528–541 (2018).

    PubMed  Google Scholar 

  • 44.

    Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS One 10, e0119133 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39, 923–941 (2020).

    CAS  PubMed  Google Scholar 

  • 46.

    Pecenka, J. R. & Lundgren, J. G. Non-target effects of clothianidin on monarch butterflies. Sci. Nat. 102, 19 (2015).

    Google Scholar 

  • 47.

    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).

    Google Scholar 

  • 49.

    Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in midwestern milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356 (2017).

    Google Scholar 

  • 50.

    Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).

    PubMed  Google Scholar 

  • 51.

    Lefevre, T., Oliver, L., Hunter, M. D. & de Roode, J. C. Evidence for trans-generational medication in nature. Ecol. Lett. 13, 1485–1493 (2010).

    PubMed  Google Scholar 

  • 52.

    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. 7, 223 (2019).

    Google Scholar 

  • 53.

    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 20, 20 (2020).

    Google Scholar 

  • 54.

    Bauerfeind, S. S., Fischer, K., Hartstein, S., Janowitz, S. & Martin-Creuzburg, D. Effects of adult nutrition on female reproduction in a fruit-feeding butterfly: The role of fruit decay and dietary lipids. J. Insect Physiol. 53, 964–973 (2017).

    Google Scholar 

  • 55.

    Geister, T. L., Lorenz, M. W., Hoffmann, K. H. & Fischer, K. Adult nutrition and butterfly fitness: Effects of diet quality on reproductive output, egg composition, and egg hatching success. Front. Zool. 5, 10 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Van Hook, T., Williams, E. H., Brower, L. P., Borkin, S. & Hein, J. A standardized protocol for ruler-based measurement of wing length in monarch butterflies, Danaus plexippus L. (Nymphalidae, Danainae). Trop. Lep. Res. 22, 42–52 (2012).

    Google Scholar 

  • 57.

    Davis, A. K. & Holden, M. T. Measuring intraspecific variation in flight-related morphology of monarch butterflies (Danaus plexippus): Which sex has the best flying gear?. J. Insects 20, 591705 (2015).

    Google Scholar 

  • 58.

    García-Barros, E. Multivariate indices as estimates of dry body weight for comparative study of body size in Lepidoptera. Nota Lepi. 38, 59–74 (2015).

    Google Scholar 

  • 59.

    Wiesweg, M. Survival Analysis: High-Level Interface for Survival Analysis and Associated Plots. R Package Version 0.1.1. (2019). https://CRAN.R-project.org/package=survivalAnalysis.

  • 60.

    Wickham, et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS  Google Scholar 

  • 61.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.2.5. (2020). https://CRAN.R-project.org/package=ggpubr.

  • 62.

    Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.4.0. (2020). https://CRAN.R-project.org/package=rstatix.

  • 63.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 64.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 65.

    Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using ‘ggplot2’. R Package Version 0.1.3. (2019) https://CRAN.R-project.org/package=ggcorrplot.

  • 66.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • 67.

    Schaarschmidt, F. & Gerhard, D. pairwiseCI: Confidence Intervals for Two-Sample Comparisons. R Package Version 0.1-27. (2019) https://CRAN.R-project.org/package=pairwiseCI.

  • 68.

    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553 (2014).

    CAS  Google Scholar 

  • 69.

    Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep. 9, 3277 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).

    PubMed  Google Scholar 

  • 71.

    Jones, P. L., Petschenka, G., Flacht, L. & Agrawal, A. A. Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 45, 264–277 (2019).

    CAS  PubMed  Google Scholar 

  • 72.

    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Hardy, N. B., Peterson, D. A., Ross, L. & Rosenheim, J. A. Does a plant-eating insect’s diet govern the evolution of insecticide resistance? Comparative tests of the pre-adaptation hypothesis. Evol. Appl. 11, 739–747 (2018).

    PubMed  Google Scholar 

  • 74.

    Basley, K. & Goulson, D. Effects of field-relevant concentrations of clothianidin on larval development of the butterfly Polyommatus icarus (Lepidoptera, Lycaenidae). Environ. Sci. Technol. 52, 3990–3996 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 75.

    Halsch, C. et al. Pesticide contamination of milkweeds across the agricultural, urban, and open spaces of low elevation Northern California. Front. Ecol. Evol. 8, 162 (2020).

    Google Scholar 

  • 76.

    Altizer, S. & Davis, A. K. Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evolution 64, 1018–1028 (2010).

    PubMed  Google Scholar 

  • 77.

    Dockx, C. Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.). Cuba. Biol. J. Linn. Soc. 92, 605–616 (2007).

    Google Scholar 

  • 78.

    Satterfield, D. A. & Davis, A. K. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings. Anim. Migr. 2, 1–7 (2014).

    Google Scholar 

  • 79.

    Freedman, M. G. & Dingle, H. Wing morphology in migratory North American monarchs: Characterizing sources of variation and understanding changes through time. Anim. Migr. 5, 61–73 (2018).

    Google Scholar 

  • 80.

    Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).

    Google Scholar 

  • 81.

    Nylin, S. & Gotthard, K. Plasticity in life-history traits. Ann. Rev. Entomol. 43, 63–83 (1998).

    CAS  Google Scholar 

  • 82.

    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Ann. Rev. Entomol. 47, 817–844 (2002).

    CAS  Google Scholar 

  • 83.

    Jervis, M. A., Boggs, C. L. & Ferns, P. N. Egg maturation strategy and its associated trade-offs: A synthesis focusing on Lepidoptera. Ecol. Entomol. 30, 359–375 (2005).

    Google Scholar 

  • 84.

    Oberhauser, K. S. Fecundity, lifespan and egg mass in butterflies: Effects of male-derived nutrients and female size. Funct. Ecol. 11, 166–175 (1997).

    Google Scholar 

  • 85.

    Main, A. R., Webb, E. B., Goyne, K. W. & Mengel, D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecol. Appl. 28, 1232–1244 (2018).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later