in

Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe

  • 1.

    Sulser, T. B., Mason-D’Croz, D., Robinson, S., Wiebe, K. & Rosegrant, M. W. Africa in the global agricultural economy in 2030 and 2050. In ReSAKSS Annual Trends and Outlook report 2014 (eds Badiane, O. & Makombe, T.). International Food Policy Research Institute (IFPRI). (2015).

  • 2.

    Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself?. Proc. Natl. Acad. Sci. U.S.A. 113, 14964–14969 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Thierfelder, C., Matemba-Mutasa, R. & Rusinamhodzi, L. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Till. Res. 146, 230–242 (2015).

    Article  Google Scholar 

  • 5.

    Good, A. G. & Beatty, P. H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biol. 9, e1001124 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Reicosky, D. C., Sauer, T. J. & Hatfi, J. L. Challenging balance between productivity and environmental quality: tillage impacts. In Soil Management: Building a Stable Base for Agriculture Vol. 1373 (eds Hatfield, J. L. & Sauer, T. J.) 13–37 (ASA and SSSA, Madison, 2011).

    Google Scholar 

  • 7.

    Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F. & Eash, N. S. Conservation agriculture and drought-tolerant germplasm: reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food Syst. 31, 414–428 (2016).

    Article  Google Scholar 

  • 8.

    Vanlauwe, B. et al. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 339, 35–50 (2011).

    CAS  Article  Google Scholar 

  • 9.

    Giller, K. E. et al. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Res. 124, 468–472 (2011).

    Article  Google Scholar 

  • 10.

    Jaleta, M., Kassie, M. & Shiferaw, B. Tradeoffs in crop residue utilization in mixed crop—livestock systems and implications for conservation agriculture. Agric. Syst. 121, 96–105 (2013).

    Article  Google Scholar 

  • 11.

    Baudron, F., Delmotte, S., Corbeels, M., Herrera, J. M. & Tittonell, P. Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe. Agric. Syst. 134, 97–106 (2015).

    Article  Google Scholar 

  • 12.

    Valbuena, D. et al. Conservation agriculture in mixed crop-livestock systems: scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crop Res. 132, 175–184 (2012).

    Article  Google Scholar 

  • 13.

    Guto, S. N. Chakula bila kulima? Trade-offs concerning soil and water conservation in heterogeneous smallholder farms of Central Kenya. Ph.D. Thesis (2011).

  • 14.

    Chivenge, P., Vanlauwe, B. & Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 342, 1–30 (2011).

    CAS  Article  Google Scholar 

  • 15.

    Bullock, D. G. & Anderson, D. S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn. J. Plant Nutr. 21, 741–755 (1998).

    CAS  Article  Google Scholar 

  • 16.

    Markwell, J., Osterman, J. C. & Mitchell, J. L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46, 467–472 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. & Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plantarum. 146, 251–260 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 5, 949–981 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Sakamoto, T. et al. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 113, 154–155 (2012).

    Google Scholar 

  • 20.

    Fernandez-Gallego, J. A. et al. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 105, 146–156 (2019).

    Article  Google Scholar 

  • 21.

    Araus, J. L. & Kefauver, S. C. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr. Opin. Plant Biol. 45, 237–247 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Gracia-Romero, A. et al. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 10(2), 349 (2018).

    ADS  Article  Google Scholar 

  • 23.

    Araus, J. L. & Cairns, J. E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Yousfi, S., Serret, M. D., MArquez A. J., Voltas, J. & Araus, J. L. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol. 194, 230–244 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Vergara-Díaz, O. et al. A novel remote sensing approach for prediction of Maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 7, 1–13 (2016).

    Article  Google Scholar 

  • 26.

    Araus, L., Sánchez, C. & Cabrera-Bosquet, L. Is heterosis in maize mediated through better water use?. New Phytol. 187(2), 392–406 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Thierfelder, C. & Wall, P. C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improv. 24, 113–121 (2010).

    Article  Google Scholar 

  • 28.

    Rusinamhodzi, L. et al. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 31, 657–673 (2011).

    Article  Google Scholar 

  • 29.

    Kafesu, N. et al. Comparative fertilization effects on maize productivity under conservation and conventional tillage on sandy soils in a smallholder cropping system in Zimbabwe. Field Crops Res. 218, 106–114 (2018).

    Article  Google Scholar 

  • 30.

    Arvidsson, J., Etana, A. & Rydberg, T. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. Eur. J. Agron. 52, 307–315 (2014).

    Article  Google Scholar 

  • 31.

    Habig, J. & Swanepoel, C. Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environmental 2, 358–384 (2015).

    Google Scholar 

  • 32.

    Fonte, S. J., Quansah, G. W. & Six, J. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Biol. Biochem. 73(3), 961–966 (2009).

    CAS  Google Scholar 

  • 33.

    Gabriel, J. L. et al. Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosyst. Eng. 160, 124–133 (2017).

    Article  Google Scholar 

  • 34.

    Choi, W.-J., Lee, S.-M., Ro, H.-M., Kim, K.-C. & Yoo, S.-H. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant Soil 245, 223–232 (2002).

    CAS  Article  Google Scholar 

  • 35.

    Bateman, A. S., Kelly, S. D. & Jickells, T. D. Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agric. Food Chem. 53, 5760–5765 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Serret, M. D., Ortiz-Monasterio, I., Pardo, A. & Araus, J. L. The effects of urea fertilization and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat. Ann. Appl. Biol. 153, 243–257 (2008).

    CAS  Google Scholar 

  • 37.

    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).

    Article  Google Scholar 

  • 38.

    Farquhar, G. D., Ehleringer, R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  • 39.

    Monneveux, P., Sheshshayee, M. S., Akhter, J. & Ribaut, J. M. Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci. 173, 390–396 (2007).

    CAS  Article  Google Scholar 

  • 40.

    Cabrera-Bosquet, L., Molero, G., Nogués, S. & Araus, J. L. Water and nitrogen conditions affect the relationships of Δ13C and Δ18O to gas exchange and growth in durum wheat. J. Exp. Bot. 60, 1633–1644 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Farquhar, G. D. On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10, 205 (1983).

    CAS  Google Scholar 

  • 42.

    Evans, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Phys. 5, 297–302 (1983).

    CAS  Article  Google Scholar 

  • 43.

    Szabó, É. Effect of some physiological properties on the quality parameters of different winter wheat varieties in a long-term experiment. Cereal Res. Commun. 42, 126–138 (2013).

    Article  Google Scholar 

  • 44.

    Giunta, F., Motzo, R. & Deidda, M. SPAD readings and associated leaf traits in durum wheat, barley and triticale cultivars. Euphytica 125, 197–205 (2002).

    CAS  Article  Google Scholar 

  • 45.

    Zhang, Y., Tremblay, N. & Zhu, J. Evaluation of the Multiplex® fluorescence sensor for the assessment of corn nitrogen status. J. Food Agric. Environ. 10(1), 1008–1016 (2012).

    CAS  Google Scholar 

  • 46.

    Cairns, J. E., Sanchez, C., Vargas, M., Ordoñez, R. & Araus, J. L. Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J. Integr. Plant Biol. 54, 1007–1020 (2012).

    PubMed  Article  Google Scholar 

  • 47.

    Buchaillot, M. L. et al. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 19(8), 1815 (2019).

    Article  Google Scholar 

  • 48.

    Monneveux, P., Sanchez, C. & Tiessen, A. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J. Agric. Sci. 146, 287–300 (2008).

    Article  Google Scholar 

  • 49.

    Hu, H. et al. Assessment of chlorophyll content based on image color analysis, comparison with SPAD-502. In 2nd International Conference on Information Engineering and Computer Science—Proceedings, ICIECS 2010 (2010).

  • 50.

    Sevik, H., Belkaylai, N. & Aktar, G. Change of chlorophyll amount in some landscape plants. J. Biotech. Sci. 2(1), 10–16 (2014).

    Google Scholar 

  • 51.

    Sevik, H., Karakas, H. & Karaca, U. Color—chlorophyll relationship of some indoor ornamental plants. Int. J. Eng. Sci. Res. Technol. 2, 1706–1712 (2013).

    Google Scholar 

  • 52.

    Pointer, M. R. A comparison of the CIE 1976 colour spaces. Color Res. App. 6, 108–118 (2009).

    Article  Google Scholar 

  • 53.

    Cooper, F. G. Munsell Manual of Color (Munsell Color Company Inc, Boston, 1929).

    Google Scholar 

  • 54.

    Carper, W. J., Lillesand, T. M. & Kiefer, R. W. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogram. Eng. Remote Sens. 56(4), 459–467 (1990).

    Google Scholar 

  • 55.

    Hunt, E. R. Jr., Cavigelli, M., Daughtry, C. S. T., Mcmurtrey Iii, J. & Walthall, C. L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 6, 359–378 (2005).

    Article  Google Scholar 

  • 56.

    Hunt, R. & Perry, E. M. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21, 103–112 (2013).

    ADS  Article  Google Scholar 

  • 57.

    Gracia-Romero, A. et al. Comparative performance of ground vs. Aerially assessed rgb and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front. Plant Sci. 8, 2004 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Süß, A. et al. Measuring leaf chlorophyll content with the Konica Minolta SPAD-502Plus—theory, measurement, problems, interpretation. EnMAP Field Guides Technical Report, GFZ Data Services (2015).

  • 59.

    Casadesús, J. et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. App. Biol. 150, 227–236 (2007).

    Article  Google Scholar 

  • 60.

    Erdle, K., Mistele, B. & Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 124, 74–84 (2011).

    Article  Google Scholar 

  • 61.

    Zaman-Allah, M. et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11, 35 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Gracia-Romero, A., Kefauver, S. C., Fernandez-Gallego, J. A., Vergara-Díaz, O. & Araus, J. L. UAV and ground image-based phenotyping: a proof of concept with Durum wheat. Remote Sens. 11(10), 1244 (2019).

    ADS  Article  Google Scholar 

  • 63.

    Cerovic, Z. G. et al. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. J. Agric. Food Chem. 63, 3669–3680 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Bendig, J. et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6, 10395–10412 (2014).

    ADS  Article  Google Scholar 

  • 65.

    Coplen, T. B. & Zhu, X. K. Explanatory glossary of terms used in expression of relative isotope ratios and gas ratios. IUPAC Recommendations 1–27 (2008).


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment