in

Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir

  • 1.

    Ward, J. V & Stanford, J. A. Serial discontinuity concept of lotic ecosystems. In Dynamics of Lotic Systems, Ann Arbor Science, Ann Arbor 29–42 (1983).

  • 2.

    Bouwman, A. F. et al. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences 10, 1–22 (2013).

    ADS  Google Scholar 

  • 3.

    Proia, L. et al. Microbial carbon processing along a river discontinuum. Freshw. Sci. 35, 1133–1147 (2016).

    Google Scholar 

  • 4.

    Casas-Ruiz, J. P. et al. A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers. Limnol. Oceanogr. 62, S85–S94 (2017).

    CAS  Google Scholar 

  • 5.

    Artigas, J. et al. Phosphorus use by planktonic communities in a large regulated Mediterranean river. Sci. Total Environ. 426, 180–187 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Gómez-Gener, L., Gubau, M., von Schiller, D., Marcé, R. & Obrador, B. Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river. Inl. Waters 8, 449–460 (2018).

    Google Scholar 

  • 7.

    Irriberri, J., Unanue, M., Barcina, I. & Egea, L. Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters. Appl. Environ. Microbiol. 53, 2308–2314 (1987).

    Google Scholar 

  • 8.

    Grossart, H. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 1127–1140 (1998).

    Google Scholar 

  • 9.

    Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).

    Google Scholar 

  • 10.

    Wilczek, S., Wörner, U., Pusch, M. T. & Fischer, H. Role of suspended particles for extracellular enzyme activity and biotic control of pelagic bacterial populations in the large lowland river Elbe. Fundam. Appl. Limnol./Arch. für Hydrobiol. 169, 153–168 (2007).

    Google Scholar 

  • 11.

    Rieck, A., Herlemann, D. P. R., Jürgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the baltic sea. Front. Microbiol. 6, 1297 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Ruiz-González, C., Proia, L., Ferrera, I., Gasol, J. M. & Sabater, S. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol. Ecol. 84, 316–331 (2013).

    PubMed  Google Scholar 

  • 13.

    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).

    PubMed  Google Scholar 

  • 14.

    López-Pérez, M., Kimes, N. E., Haro-Moreno, J. M. & Rodriguez-Valera, F. Not all particles are equal: The selective enrichment of particle-associated bacteria from the mediterranean sea. Front. Microbiol. 7, 996 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Zeglin, L. H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 6, 1–15 (2015).

    Google Scholar 

  • 17.

    Galand, P. E., Lovejoy, C., Pouliot, J. & Vincent, W. F. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J. Mar. Syst. 74, 774–782 (2008).

    Google Scholar 

  • 18.

    Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Crump, B. C. & Baross, J. A. Archaeaplankton in the Columbia River, its estuary and the adjacent coastal ocean, USA. FEMS Microbiol. Ecol. 31, 231–239 (2000).

    CAS  PubMed  Google Scholar 

  • 20.

    Dumestre, J., Casamayor, E. O., Massana, R. & Pedrós-alió, C. Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquat. Microb. Ecol. 26, 209–221 (2001).

    Google Scholar 

  • 21.

    Galand, P. E., Lovejoy, C. & Vincent, W. F. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat. Microb. Ecol. 44, 115–126 (2006).

    Google Scholar 

  • 22.

    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, Princeton, 2018).

    Google Scholar 

  • 23.

    Lindström, E. S. & Langenheder, S. Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4, 1–9 (2012).

    PubMed  Google Scholar 

  • 24.

    Staley, C. et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505, 435–445 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Ruiz-González, C. et al. Weak coherence in abundance patterns between bacterial classes and their constituent OTUs along a regulated river. Front. Microbiol. 6, 1–13 (2015).

    Google Scholar 

  • 26.

    Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep. 2, 706–714 (2010).

    PubMed  Google Scholar 

  • 27.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    CAS  PubMed  Google Scholar 

  • 28.

    Böckelmann, U., Manz, W., Neu, T. R. & Szewzyk, U. Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol. Ecol. 33, 157–170 (2000).

    Google Scholar 

  • 29.

    Ghiglione, J. F. et al. Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb. Ecol. 54, 217–231 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Rösel, S. & Grossart, H. P. Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring. Aquat. Microb. Ecol. 66, 169–181 (2012).

    Google Scholar 

  • 31.

    Crespo, B. G., Pommier, T., Fernández-Gómez, B. & Pedrós-Alió, C. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2, 541–552 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Ortega-Retuerta, E., Joux, F., Jeffrey, W. H. & Ghiglione, J. F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10, 2747–2759 (2013).

    ADS  Google Scholar 

  • 33.

    Hollibaughl, J. T., Wongl, P. S. & Michael, C. Similarity of particle-associated and free-living bacterial communities in northern San Francisco. Water 21, 103–114 (2000).

    Google Scholar 

  • 34.

    Moeseneder, M. M., Winter, C. & Herndl, G. J. Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol. Oceanogr. 46, 95–107 (2001).

    ADS  CAS  Google Scholar 

  • 35.

    Eloe, E. A. et al. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 3, 449–458 (2011).

    PubMed  Google Scholar 

  • 36.

    Zhang, R., Liu, B., Lau, S., Ki, J.-S. & Qian, P.-Y. Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol. Ecol. 61, 496–508 (2007).

    CAS  PubMed  Google Scholar 

  • 37.

    Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).

    CAS  PubMed  Google Scholar 

  • 38.

    Ivars-Martinez, E. et al. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J. 2, 1194–1212 (2008).

    CAS  PubMed  Google Scholar 

  • 39.

    Fernández-Gómez, B. et al. Ecology of marine Bacteroidetes: A comparative genomics approach. ISME J. 7, 1026–1037 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Kasalický, V., Jezbera, J., Hahn, M. W. & Šimek, K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 8, e58209 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Simek, K. et al. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the Betaproteobacterial genus Limnohabitans. Appl. Environ. Microbiol. 76, 631–639 (2010).

    CAS  PubMed  Google Scholar 

  • 43.

    Jezberová, J., Šimek, K., Hahn, M. W., Jezbera, J. & Kasalický, V. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS ONE 8, e58527 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5, 1–9 (2014).

    Google Scholar 

  • 45.

    Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).

    CAS  PubMed  Google Scholar 

  • 46.

    Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).

    CAS  PubMed  Google Scholar 

  • 47.

    Liu, X. et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6, 1–16 (2018).

    Google Scholar 

  • 48.

    Ortiz-Alvarez, R. & Casamayor, E. O. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ. Microbiol. Rep. 8, 210–217 (2016).

    CAS  PubMed  Google Scholar 

  • 49.

    Fillol, M., Auguet, J.-C., Casamayor, E. O. & Borrego, C. M. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 10, 653–677 (2016).

    Google Scholar 

  • 50.

    Durbin, A. M. & Teske, A. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front. Microbiol. 3, 168 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Fillol, M., Sànchez-Melsió, A., Gich, F. & Borrego, M. C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol. Ecol. 91, fiv20 (2015).

    Google Scholar 

  • 52.

    Compte-Port, S. et al. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. Microb. Ecol. 74, 776–787 (2017).

    PubMed  Google Scholar 

  • 53.

    Allgaier, M. & Grossart, H. Diversity and seasonal dynamics of actinobacteria populations in four lakes in Northeastern Germany. Appl. Environ. Microbiol. 72, 3489–3497 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley-VCH Verlag Gmbh, Weinheim, 1999).

    Google Scholar 

  • 55.

    Dowd, S. E. et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 8, 125 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Desantis, T. Z. et al. Gene database and workbench compatible with ARB. (California Institute of Technology, accessed 2 October 2 2014);http://aem.asm.org/.

  • 58.

    Desantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    CAS  PubMed  Google Scholar 

  • 60.

    Quast, C. et al. The SILVA ribosomal RNA gene database project : improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Google Scholar 

  • 61.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996 (2018).

    CAS  PubMed  Google Scholar 

  • 62.

    Lozupone, C. & Knight, R. UniFrac : A new phylogenetic method for comparing microbial communitiess. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Andersen, S. K., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv https://doi.org/10.1101/299537 (2018).

    Article  Google Scholar 

  • 64.

    R Development Core Team. R: A language and environment for statistical computing. ISBN: 3-900051-07-0 (2011).

  • 65.

    Dufrene, M. & Legendre, P. Species assemblages and indicator species: The need for flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • 66.

    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed  Google Scholar 

  • 67.

    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 69.

    Wickham, H. ggplot2. Elegant Grsaphics for Data Analysis (Springer, New York , 2009). https://doi.org/10.1007/978-0-387-98141-3.

    Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture