in

Long-term survey of sea turtles (Caretta caretta) reveals correlations between parasite infection, feeding ecology, reproductive success and population dynamics

  • 1.

    Brooks, D. R. & Hoberg, E. P. How will global climate change affect parasite-host assemblages?. Trends Parasitol. 23, 571–574 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Brunner, F. S. & Eizaguirre, C. Can environmental change affect host/parasite-mediated speciation?. Zoology 119, 384–394 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. J. Anim. Ecol. 80, 1196–1206 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).

    Google Scholar 

  • 7.

    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Goedknegt, M. A., Welsh, J. E., Drent, J. & Thieltges, D. W. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere 6, 1–9 (2015).

    Article  Google Scholar 

  • 9.

    Watson, M. J. What drives population-level effects of parasites? Meta-analysis meets life-history. Int. J. Parasitol. Parasites Wildl. 2, 190–196 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    De Castro, F. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article  Google Scholar 

  • 11.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Godwin, S. C., Dill, L. M., Reynolds, J. D. & Krkošek, M. Sea lice, sockeye salmon, and foraging competition: Lousy fish are lousy competitors. Can. J. Fish. Aquat. Sci. 72, 1113–1120 (2015).

    Article  Google Scholar 

  • 14.

    Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Simpson, S. J., Sibly, K. P. L., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).

    Article  Google Scholar 

  • 16.

    Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P. & Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?. J. Anim. Ecol. 78, 437–446 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental evidence that parasites drive eco-evolutionary feedbacks. Proc. Natl. Acad. Sci. 114, 3678–3683 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37 (1984).

    Article  Google Scholar 

  • 19.

    Herbst, L. H. Fibropapillomatosis of marine turtles. Annu. Rev. Fish Dis. 4, 389–425 (1994).

    Article  Google Scholar 

  • 20.

    Aguirre, A. & Lutz, P. L. Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1, 275–283 (2004).

    Google Scholar 

  • 21.

    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J. N. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology 138, 537–546 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Britton, J. R. & Andreou, D. Parasitism as a driver of trophic niche specialisation. Trends Parasitol. 32, 437–445 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 25.

    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 18, 87–98 (2000).

    Article  Google Scholar 

  • 26.

    Durso, A. M. & French, S. S. Stable isotope tracers reveal a trade-off between reproduction and immunity in a reptile with competing needs. Funct. Ecol. 32, 648–656 (2018).

    Article  Google Scholar 

  • 27.

    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).

    Article  Google Scholar 

  • 28.

    Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M. & Milinski, M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18, 3316–3329 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Schwanz, L. E. Persistent effects of maternal parasitic infection on offspring fitness: implications for adaptive reproductive strategies when parasitized. Funct. Ecol. 22, 691–698 (2008).

    Article  Google Scholar 

  • 30.

    Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B Biol. Sci. 276, 925–934 (2009).

    Article  Google Scholar 

  • 31.

    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Uller, T., Isaksson, C. & Olsson, M. Immune challenge reduces reproductive output and growth in a lizard. Funct. Ecol. 20, 873–879 (2006).

    Article  Google Scholar 

  • 34.

    Velando, A., Drummond, H. & Torres, R. Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. 273, 1443–1448 (2006).

    Article  Google Scholar 

  • 35.

    Kaufmann, J., Lenz, T. L., Milinski, M. & Eizaguirre, C. Experimental parasite infection reveals costs and benefits of paternal effects. Ecol. Lett. 17, 1409–1417 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Pigeault, R., Garnier, R., Rivero, A. & Gandon, S. Evolution of transgenerational immunity in invertebrates. Proc. R. Soc. B Biol. Sci. 283, 20161136 (2016).

    Article  CAS  Google Scholar 

  • 37.

    Roth, O., Beemelmanns, A., Barribeau, S. M. & Sadd, B. M. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb). 121, 225–238 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Mcgowin, A. E. et al. Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity. Mol. Ecol. Resour. 11, 271–278 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Davies, R. W. & Chapman, C. G. First record from North America of the Piscicolid Leech, Ozobranchus margoi, a parasite of Marine Turtles. J. Fish. Res. Board Canada 31, 104–106 (1974).

    Article  Google Scholar 

  • 40.

    Bunkley-Williams, L. et al. New leeches and diseases for the hawksbill sea turtle and the West Indies. Comp. Parasitol. 75, 263–270 (2008).

    Article  Google Scholar 

  • 41.

    Greenblatt, R. J. et al. Genomic variation of the fibropapilloma-associated marine turtle herpesvirus across seven geographic areas and three host species. J. Virol. 79, 1125–1132 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Jones, K., Ariel, E., Burgess, G. & Read, M. A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet. J. 212, 48–57 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Marco, A., Abella, E., Martins, S., López, O. & Medina, M. Abundance and exploitation of loggerhead turtles nesting in Boa Vista island, Cape Verde: the only substantial rookery in the eastern Atlantic. Anim. Conserv. 15, 351–360 (2012).

    Article  Google Scholar 

  • 44.

    Stiebens, V. A. et al. Living on the edge: how philopatry maintains adaptive potential. Proc. R. Soc. 280, 1–9 (2013).

    Google Scholar 

  • 45.

    Baltazar-Soares, M. et al. Distribution of genetic diversity reveals colonization and philopatry of the loggerhead sea turtles across geographic scales. Sci. Rep. https://doi.org/10.1038/s41598-020-74141-6 (2020).

    Article  Google Scholar 

  • 46.

    Light, J. E. & Siddall, M. E. Phylogeny of the Leech family glossiphoniidae based on mitochondrial gene sequences and morphological data. J. Parasitol. 85, 815–823 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Cameron, S. J. K. et al. Diversity of feeding strategies in loggerhead sea turtles from the Cape Verde archipelago. Mar. Biol. 166, 130 (2019).

    Article  Google Scholar 

  • 49.

    Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. & Eizaguirre, C. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. 281, 20141209 (2014).

    Google Scholar 

  • 50.

    Maulany, R. I., Booth, D. T. & Baxter, G. S. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Mar. Biol. 159, 2651–2661 (2012).

    Article  Google Scholar 

  • 51.

    Hays, G. C. & Speakman, J. R. Clutch size for Mediterranean loggerhead turtles (Caretta caretta). J. Zool. 226, 321–327 (1992).

    Article  Google Scholar 

  • 52.

    Rodenbusch, C. R., Marks, F. S., Canal, C. W. & Reck, J. Marine leech Ozobranchus margoi parasitizing loggerhead turtle (Caretta caretta) in Rio Grande do Sul Brazil. Rev. Bras. Parasitol. Vet. 21, 301–303 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Eder, E. et al. Foraging dichotomy in loggerhead sea turtles Caretta caretta off northwestern Africa. Mar. Ecol. Prog. Ser. 470, 113–122 (2012).

    ADS  Article  Google Scholar 

  • 54.

    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Van Velan, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  • 56.

    Altizer, S. et al. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Greenblatt, R. J. et al. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas). Virology 321, 101–110 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Bertrand, M., Marcogliese, D. J. & Magnan, P. Trophic polymorphism in brook charr revealed by diet, parasites and morphometrics. J. Fish Biol. 72, 555–572 (2008).

    Article  Google Scholar 

  • 59.

    Venesky, M. D., Parris, M. J. & Storfer, A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth 6, 565–575 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Naug, D. Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol. Lett. 10, 1–4 (2014).

    Article  Google Scholar 

  • 61.

    Frick, M. G., Williams, K. L., Bolten, A. B., Bjorndal, K. A. & Martins, H. R. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endanger. Species Res. 9, 91–97 (2009).

    Article  Google Scholar 

  • 62.

    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16, 990–995 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160, S9–S22 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Omeyer, L. C. M., Godley, B. J. & Broderick, A. C. Growth rates of adult sea turtles. Endanger. Species Res. 34, 357–371 (2017).

    Article  Google Scholar 

  • 66.

    Agnew, P., Koella, J. C. & Michalakis, Y. Host life history responses to parasitism. Microbes Infect. 2, 891–896 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Sorci, G., Massot, M. & Clobert, J. Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am. Nat. 144, 153–164 (1994).

    Article  Google Scholar 

  • 68.

    Booth, D. T., Feeney, R. & Shibata, Y. Nest and maternal origin can influence morphology and locomotor performance of hatchling green turtles (Chelonia mydas) incubated in field nests. Mar. Biol. 160, 127–137 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean

    Seascape connectivity of European anchovy in the Central Mediterranean Sea revealed by weighted Lagrangian backtracking and bio-energetic modelling