in

Long-term survey of sea turtles (Caretta caretta) reveals correlations between parasite infection, feeding ecology, reproductive success and population dynamics

  • 1.

    Brooks, D. R. & Hoberg, E. P. How will global climate change affect parasite-host assemblages?. Trends Parasitol. 23, 571–574 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Brunner, F. S. & Eizaguirre, C. Can environmental change affect host/parasite-mediated speciation?. Zoology 119, 384–394 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. J. Anim. Ecol. 80, 1196–1206 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).

    Google Scholar 

  • 7.

    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Goedknegt, M. A., Welsh, J. E., Drent, J. & Thieltges, D. W. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere 6, 1–9 (2015).

    Article  Google Scholar 

  • 9.

    Watson, M. J. What drives population-level effects of parasites? Meta-analysis meets life-history. Int. J. Parasitol. Parasites Wildl. 2, 190–196 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    De Castro, F. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article  Google Scholar 

  • 11.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Godwin, S. C., Dill, L. M., Reynolds, J. D. & Krkošek, M. Sea lice, sockeye salmon, and foraging competition: Lousy fish are lousy competitors. Can. J. Fish. Aquat. Sci. 72, 1113–1120 (2015).

    Article  Google Scholar 

  • 14.

    Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Simpson, S. J., Sibly, K. P. L., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).

    Article  Google Scholar 

  • 16.

    Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P. & Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?. J. Anim. Ecol. 78, 437–446 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental evidence that parasites drive eco-evolutionary feedbacks. Proc. Natl. Acad. Sci. 114, 3678–3683 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37 (1984).

    Article  Google Scholar 

  • 19.

    Herbst, L. H. Fibropapillomatosis of marine turtles. Annu. Rev. Fish Dis. 4, 389–425 (1994).

    Article  Google Scholar 

  • 20.

    Aguirre, A. & Lutz, P. L. Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1, 275–283 (2004).

    Google Scholar 

  • 21.

    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J. N. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology 138, 537–546 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Britton, J. R. & Andreou, D. Parasitism as a driver of trophic niche specialisation. Trends Parasitol. 32, 437–445 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 25.

    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 18, 87–98 (2000).

    Article  Google Scholar 

  • 26.

    Durso, A. M. & French, S. S. Stable isotope tracers reveal a trade-off between reproduction and immunity in a reptile with competing needs. Funct. Ecol. 32, 648–656 (2018).

    Article  Google Scholar 

  • 27.

    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).

    Article  Google Scholar 

  • 28.

    Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M. & Milinski, M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18, 3316–3329 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Schwanz, L. E. Persistent effects of maternal parasitic infection on offspring fitness: implications for adaptive reproductive strategies when parasitized. Funct. Ecol. 22, 691–698 (2008).

    Article  Google Scholar 

  • 30.

    Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B Biol. Sci. 276, 925–934 (2009).

    Article  Google Scholar 

  • 31.

    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Uller, T., Isaksson, C. & Olsson, M. Immune challenge reduces reproductive output and growth in a lizard. Funct. Ecol. 20, 873–879 (2006).

    Article  Google Scholar 

  • 34.

    Velando, A., Drummond, H. & Torres, R. Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. 273, 1443–1448 (2006).

    Article  Google Scholar 

  • 35.

    Kaufmann, J., Lenz, T. L., Milinski, M. & Eizaguirre, C. Experimental parasite infection reveals costs and benefits of paternal effects. Ecol. Lett. 17, 1409–1417 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Pigeault, R., Garnier, R., Rivero, A. & Gandon, S. Evolution of transgenerational immunity in invertebrates. Proc. R. Soc. B Biol. Sci. 283, 20161136 (2016).

    Article  CAS  Google Scholar 

  • 37.

    Roth, O., Beemelmanns, A., Barribeau, S. M. & Sadd, B. M. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb). 121, 225–238 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Mcgowin, A. E. et al. Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity. Mol. Ecol. Resour. 11, 271–278 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Davies, R. W. & Chapman, C. G. First record from North America of the Piscicolid Leech, Ozobranchus margoi, a parasite of Marine Turtles. J. Fish. Res. Board Canada 31, 104–106 (1974).

    Article  Google Scholar 

  • 40.

    Bunkley-Williams, L. et al. New leeches and diseases for the hawksbill sea turtle and the West Indies. Comp. Parasitol. 75, 263–270 (2008).

    Article  Google Scholar 

  • 41.

    Greenblatt, R. J. et al. Genomic variation of the fibropapilloma-associated marine turtle herpesvirus across seven geographic areas and three host species. J. Virol. 79, 1125–1132 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Jones, K., Ariel, E., Burgess, G. & Read, M. A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet. J. 212, 48–57 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Marco, A., Abella, E., Martins, S., López, O. & Medina, M. Abundance and exploitation of loggerhead turtles nesting in Boa Vista island, Cape Verde: the only substantial rookery in the eastern Atlantic. Anim. Conserv. 15, 351–360 (2012).

    Article  Google Scholar 

  • 44.

    Stiebens, V. A. et al. Living on the edge: how philopatry maintains adaptive potential. Proc. R. Soc. 280, 1–9 (2013).

    Google Scholar 

  • 45.

    Baltazar-Soares, M. et al. Distribution of genetic diversity reveals colonization and philopatry of the loggerhead sea turtles across geographic scales. Sci. Rep. https://doi.org/10.1038/s41598-020-74141-6 (2020).

    Article  Google Scholar 

  • 46.

    Light, J. E. & Siddall, M. E. Phylogeny of the Leech family glossiphoniidae based on mitochondrial gene sequences and morphological data. J. Parasitol. 85, 815–823 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Cameron, S. J. K. et al. Diversity of feeding strategies in loggerhead sea turtles from the Cape Verde archipelago. Mar. Biol. 166, 130 (2019).

    Article  Google Scholar 

  • 49.

    Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. & Eizaguirre, C. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. 281, 20141209 (2014).

    Google Scholar 

  • 50.

    Maulany, R. I., Booth, D. T. & Baxter, G. S. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Mar. Biol. 159, 2651–2661 (2012).

    Article  Google Scholar 

  • 51.

    Hays, G. C. & Speakman, J. R. Clutch size for Mediterranean loggerhead turtles (Caretta caretta). J. Zool. 226, 321–327 (1992).

    Article  Google Scholar 

  • 52.

    Rodenbusch, C. R., Marks, F. S., Canal, C. W. & Reck, J. Marine leech Ozobranchus margoi parasitizing loggerhead turtle (Caretta caretta) in Rio Grande do Sul Brazil. Rev. Bras. Parasitol. Vet. 21, 301–303 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Eder, E. et al. Foraging dichotomy in loggerhead sea turtles Caretta caretta off northwestern Africa. Mar. Ecol. Prog. Ser. 470, 113–122 (2012).

    ADS  Article  Google Scholar 

  • 54.

    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Van Velan, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  • 56.

    Altizer, S. et al. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Greenblatt, R. J. et al. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas). Virology 321, 101–110 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Bertrand, M., Marcogliese, D. J. & Magnan, P. Trophic polymorphism in brook charr revealed by diet, parasites and morphometrics. J. Fish Biol. 72, 555–572 (2008).

    Article  Google Scholar 

  • 59.

    Venesky, M. D., Parris, M. J. & Storfer, A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth 6, 565–575 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Naug, D. Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol. Lett. 10, 1–4 (2014).

    Article  Google Scholar 

  • 61.

    Frick, M. G., Williams, K. L., Bolten, A. B., Bjorndal, K. A. & Martins, H. R. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endanger. Species Res. 9, 91–97 (2009).

    Article  Google Scholar 

  • 62.

    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16, 990–995 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160, S9–S22 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Omeyer, L. C. M., Godley, B. J. & Broderick, A. C. Growth rates of adult sea turtles. Endanger. Species Res. 34, 357–371 (2017).

    Article  Google Scholar 

  • 66.

    Agnew, P., Koella, J. C. & Michalakis, Y. Host life history responses to parasitism. Microbes Infect. 2, 891–896 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Sorci, G., Massot, M. & Clobert, J. Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am. Nat. 144, 153–164 (1994).

    Article  Google Scholar 

  • 68.

    Booth, D. T., Feeney, R. & Shibata, Y. Nest and maternal origin can influence morphology and locomotor performance of hatchling green turtles (Chelonia mydas) incubated in field nests. Mar. Biol. 160, 127–137 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century