in

Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species

  • 1.

    Clements, A. N. The Biology of Mosquitoes: Sensory Reception and Behaviour Vol. 2 (CAB1 Publishing, 1999).

  • 2.

    Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Assogba, B. S. et al. Characterization of swarming and mating behaviour between Anopheles coluzzii and Anopheles melas in a sympatry area of Benin. Acta Trop. 132, S53–S63 (2014).

    PubMed  Google Scholar 

  • 4.

    Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 132, S42–S52 (2014).

    PubMed  Google Scholar 

  • 5.

    Zawada, J. W. et al. Molecular and physiological analysis of Anopheles funestus swarms in Nchelenge, Zambia. Malar. J. 17, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Achinko, D. et al. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures. Med. Vet. Entomol. 30, 14–20 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Kaindoa, E. W. et al. Swarms of the malaria vector Anopheles funestus in Tanzania. Malar. J. 18, 29 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Lees, R. S. et al. Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop. 132, S2–S11 (2013).

    PubMed  Google Scholar 

  • 9.

    Howell, P. I. & Knols, B. G. J. Male mating biology. Malar. J. 8, S8 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Jones, M. D. R., Gubbins, S. J. & Cubbin, C. M. Circadian flight activity in 4 sibling species of Anopheles-gambiae complex (Diptera, Culicidae). Bull. Entomol. Res. 64, 241–246 (1974).

    Google Scholar 

  • 11.

    Rund, S. S. C., Lee, S. J., Bush, B. R. & Duffield, G. E. Strain- and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. J. Insect Physiol. 58, 1609–1619 (2012).

    CAS  PubMed  Google Scholar 

  • 12.

    Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles-gambiae s-l. II. Swarming behavior. Physiol. Entomol. 5, 315–320 (1980).

    Google Scholar 

  • 13.

    Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitos in Tanzania. Neth. J. Zool. 34, 367–387 (1984).

    Google Scholar 

  • 15.

    Fawaz, E. Y., Allan, S. A., Bernier, U. R., Obenauer, P. J. & Diclaro, J. W. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39, 347–354 (2014).

    PubMed  Google Scholar 

  • 16.

    Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 23, 1–10 (2007).

    PubMed  Google Scholar 

  • 17.

    Gjullin, C. M., Whitfield, T. L. & Buckley, J. F. Male pheromones of Culex quinquefasciatus, C. tarsalis and C. pipiens that attract females of these species. Mosq. News 27, 382–387 (1967).

    Google Scholar 

  • 18.

    Vas, G. & Vekey, K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39, 233–254 (2004).

    CAS  PubMed  Google Scholar 

  • 19.

    Borg-Karlson, A. & Mozuraitis, R. Solid phase microextraction technique used for collecting volatiles released by individual signalling Phyllonorycter sylvella moths. Z. Naturforsch. C 51c, 599–602 (1996).

    Google Scholar 

  • 20.

    Millar, J. G. & Sims, J. J. in Methods in Chemical Ecology: Chemical Methods Vol. 1 (eds Millar, J. G. & Haynes, K. F.) 1–37 (Kluwer Academic Publishers, 2000).

  • 21.

    Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).

    PubMed  Google Scholar 

  • 22.

    Charlwood, J. D., Thompson, R. & Madsen, H. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar. J. 2, 2 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Dabire, K. R. et al. Assortative mating in mixed swarms of the mosquito Anopheles gambiae s.s. M and S molecular forms, in Burkina Faso, West Africa. Med. Vet. Entomol. 27, 298–312 (2013).

    CAS  PubMed  Google Scholar 

  • 24.

    Sawadogo, S. P. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Pennetier, C., Warren, B., Dabire, K. R., Russell, I. J. & Gibson, G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 278–278 (2010).

  • 26.

    Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).

    Google Scholar 

  • 27.

    Cator, L. J., Ng’Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behav. Ecol. 21, 1033–1039 (2010).

    Google Scholar 

  • 28.

    Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Carlson, D. A. & Service, M. W. Differentiation between species of the Anopheles gambiae Giles complex (Diptera, Culicidae) by analysis of cuticular hydrocarbons. Ann. Trop. Med. Parasitol. 73, 589–592 (1979).

    CAS  PubMed  Google Scholar 

  • 30.

    Carlson, D. A. & Service, M. W. Identification of mosquitos of Anopheles gambiae species complex-A and complex-B by analysis of cuticular components. Science 207, 1089–1091 (1980).

    CAS  PubMed  Google Scholar 

  • 31.

    Milligan, P. J. M. et al. A study of the use of gas-chromatography of cuticular hydrocarbons for identifying members of the Anopheles gambiae (Diptera, Culicidae) complex. Bull. Entomol. Res. 83, 613–624 (1993).

    CAS  Google Scholar 

  • 32.

    Caputo, B. et al. Comparative analysis of epicuticular lipid profiles of sympatric and allopatric field populations of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso (West Africa). Insect Biochem. Mol. Biol. 37, 389–398 (2007).

    CAS  PubMed  Google Scholar 

  • 33.

    Tripet, F., Dolo, G., Traore, S. & Lanzaro, G. C. The “wingbeat hypothesis” of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).

    PubMed  Google Scholar 

  • 34.

    Simoes, P. M. V., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–385 (2017).

    PubMed  Google Scholar 

  • 35.

    Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 10, 1102–1120 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Lawniczak, M. K. N. et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science 330, 512–514 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Wicker-Thomas, C. Evolution of insect pheromones and their role in reproductive isolation and speciation. Ann. Soc. Entomol. Fr. 47, 55–62 (2011).

    Google Scholar 

  • 38.

    Francke, W. & Schulz, S. in Comprehensive Natural Products II: Chemistry and Biology Vol. 4 Chemical Ecology (eds Liu, H. W. & Mander, L.) 153–223 (Elsevier, 2010).

  • 39.

    El-Sayed, A. M. The Pherobase: Database of Pheromones and Semiochemicals (Pherobase, 2020); https://www.pherobase.com

  • 40.

    Blomquist, G. J. et al. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40, 699–712 (2010).

    CAS  PubMed  Google Scholar 

  • 41.

    Slodowicz, M., Ceriani-Nakamurakare, E., Carmaran, C. & Gonzalez-Audino, P. Sex pheromone component produced by microbial associates of the forest pest Megaplatypus mutatus. Entomol. Exp. Appl. 167, 231–240 (2019).

    CAS  Google Scholar 

  • 42.

    Xiao, Z. J. & Lu, J. R. Generation of acetoin and its derivatives in foods. J. Agric. Food Chem. 62, 6487–6497 (2014).

    CAS  PubMed  Google Scholar 

  • 43.

    de Boer, J. G. et al. Odours of Plasmodium falciparum-infected participants influence mosquito–host interactions. Sci. Rep. 7, 9283 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Jha, S. K. Characterization of human body odor and identification of aldehydes using chemical sensor. Rev. Anal. Chem. 36, 20160028 (2017).

    Google Scholar 

  • 45.

    Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Meijerink, J. et al. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J. Chem. Ecol. 26, 1367–1382 (2000).

    CAS  Google Scholar 

  • 47.

    Logan, J. G. et al. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J. 9, 239 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Menger, D. J., Van Loon, J. J. A. & Takken, W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med. Vet. Entomol. 28, 407–413 (2014).

    CAS  PubMed  Google Scholar 

  • 49.

    Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS ONE 9, e89818 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Jacob, J. W. et al. Independent and interactive effect of plant- and mammalian-based odors on the response of the malaria vector, Anopheles garnbiae. Acta Trop. 185, 98–106 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Vanickova, L., Canale, A. & Benelli, G. Sexual chemoecology of mosquitoes (Diptera, Culicidae): current knowledge and implications for vector control programs. Parasitol. Int. 66, 190–195 (2017).

    PubMed  Google Scholar 

  • 52.

    Sawadogo, S. P. et al. Targeting male mosquito swarms to control malaria vector density. PLoS ONE 12, e0173273 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Emami, S. N., Ranford-Cartwright, L. C. & Ferguson, H. M. The transmission potential of malaria-infected mosquitoes (An. gambiae-Keele, An.arabiensis-Ifakara) is altered by the vertebrate blood type they consume during parasite development. Sci. Rep. 7, 40520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Hunt, R. H., Brooke, B. D., Pillay, C., Koekemoer, L. L. & Coetzee, M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med. Vet. Entomol. 19, 271–275 (2005).

    CAS  PubMed  Google Scholar 

  • 55.

    Anderson, J. F. Histopathology of intersexuality in mosquitoes. J. Exp. Zool. 165, 475–484 (1967).

    CAS  PubMed  Google Scholar 

  • 56.

    Oliva, C. F., Benedict, M. Q., Lemperiere, G. & Gilles, J. Laboratory selection for an accelerated mosquito sexual development rate. Malar. J. 10, 135 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Brezolin, A. N. et al. Tools for detecting insect semiochemicals: a review. Anal. Bioanal. Chem. 410, 4091–4108 (2018).

    CAS  PubMed  Google Scholar 

  • 58.

    AL-Khshemawee, H., Agarwal, M. & Ren, Y. Evaluation of stable isotope 13C6-glucose on volatile organic compounds in different stages of Mediterranean fruit fly (Medfly) Ceratitis capitate (Diptera: Tephritidae). Entomol. Ornithol. Herpetol. 6, 1–5 (2017).

    Google Scholar 

  • 59.

    Hare, D. J. in Methods in Chemical Ecology: Bioassay Methods (eds Millar, J. G. & Haynes, K. F.) 212–270 (Kluwer Academic Publishers, 2000).

  • 60.

    Munhenga, G. et al. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: steps towards the use of the sterile insect technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit. Vectors 9, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Spitzen, J. et al. A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat. PLoS ONE 8, e62995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    EthoVision XT Base + MAM and Track 3D module-2019 (Noldus, 2019).


  • Source: Ecology - nature.com

    Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration

    Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation