in

Mapping carbon accumulation potential from global natural forest regrowth

  • 1.

    Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Chang. 534, 631–639 (2016).

    CAS  Google Scholar 

  • 2.

    Masson-Delmotte, V. et al. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (IPCC, 2018).

  • 3.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

  • 5.

    Dong, H., MacDonald, J. D., Ogle, S. M., Sanz Sanchez, M. J. & Rocha, M. T. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

  • 6.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).

    ADS  Google Scholar 

  • 7.

    International Union for Conservation of Nature infoFLR https://infoflr.org/ (IUCN, accessed 20 June 2018).

  • 8.

    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. Lond. B 375, 20190120 (2020).

    Google Scholar 

  • 10.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Lewis, S., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).

    Google Scholar 

  • 14.

    United Nations Adoption of the Paris Agreement https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (UN, 2015).

  • 15.

    Holl, K. D. & Brancalion, P. S. Tree planting is not a simple solution. Science 368, 580–582 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4, 503–507 (2014).

    ADS  Google Scholar 

  • 17.

    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. Ann. Missouri Botan. Gardens 102, 251–257 (2017).

    Google Scholar 

  • 18.

    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2014).

    ADS  Google Scholar 

  • 19.

    Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One 12, e0171368 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).

    Google Scholar 

  • 22.

    Shimamoto, C. Y., Padial, A. A., Da Rosa, C. M. & Marques, M. C. M. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13, e0208523 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Betts, R. A. Climate science: afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).

    ADS  CAS  Google Scholar 

  • 25.

    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl Acad. Sci. USA 115, 2776–2781 (2018).

    CAS  PubMed  Google Scholar 

  • 26.

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds) The Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).

  • 27.

    Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).

    Google Scholar 

  • 28.

    Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2014).

    Google Scholar 

  • 29.

    Arneth, A. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems https://www.ipcc.ch/srccl/ (IPCC, 2019).

  • 30.

    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    ADS  Google Scholar 

  • 31.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).

    ADS  CAS  Google Scholar 

  • 33.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Paul, K. I. & Roxburgh, S. H. Predicting carbon sequestration of woody biomass following land restoration. For. Ecol. Manage. 460, 117838 (2020).

    Google Scholar 

  • 35.

    Anderson-Teixeira, K. J. et al. ForC: a global database of forest carbon stocks and fluxes. Ecology 99, 1507 (2018).

    PubMed  Google Scholar 

  • 36.

    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Stocker, T.F. et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

  • 38.

    Zahawi, R. a., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).

    Google Scholar 

  • 39.

    Ashton, M. S. et al. Restoration of rain forest beneath pine plantations: a relay floristic model with special application to tropical South Asia. For. Ecol. Manage. 329, 351–359 (2014).

    Google Scholar 

  • 40.

    Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R. & Metzger, J. P. Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For. Ecol. Manage. 257, 1219–1230 (2009).

    Google Scholar 

  • 41.

    Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).

    Google Scholar 

  • 42.

    Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. of Chicago Press, 2014).

  • 43.

    Speed, J. D. M., Martinsen, V., Mysterud, A., Holand, O. & Austrheim, G. Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17, 1138–1150 (2014).

    CAS  Google Scholar 

  • 44.

    Reid, J. L. et al. How long do restored ecosystems persist? Ann. Missouri Botan. Gardens 102, 258–265 (2017).

    Google Scholar 

  • 45.

    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).

    Google Scholar 

  • 46.

    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).

    ADS  Google Scholar 

  • 47.

    Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 8165 (2008).

    ADS  Google Scholar 

  • 48.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Google Scholar 

  • 49.

    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 50.

    Crouzeilles, R., Ferreira, M. S. & Curran, M. Forest restoration: a global dataset for biodiversity and vegetation structure. Ecology 97, 2167 (2016).

    PubMed  Google Scholar 

  • 51.

    Deng, L., Shangguan, Z. P. & Sweeney, S. ‘Grain for Green’ driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 4, 7039 (2015).

    Google Scholar 

  • 52.

    Bárcena, T. G. et al. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob. Change Biol. 20, 2393–2405 (2014).

    ADS  Google Scholar 

  • 53.

    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).

    Google Scholar 

  • 54.

    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).

    Google Scholar 

  • 55.

    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Change Biol. 21, 2762–2772 (2015).

    ADS  Google Scholar 

  • 56.

    Becknell, J. M., Kissing, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012).

    Google Scholar 

  • 57.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 1–15 (2016).

    Google Scholar 

  • 58.

    Guo, Q. & Ren, H. Productivity as related to diversity and age in planted versus natural forests. Glob. Ecol. Biogeogr. 23, 1461–1471 (2014).

    Google Scholar 

  • 59.

    Krankina, O. NPP Boreal Forests: Siberian Scots Pine Forests, Russia, 1968–1974, R1 http://daac.ornl.gov (Oak Ridge National Laboratory, 1995).

  • 60.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  • 62.

    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 63.

    James, J., Devine, W., Harrison, R. & Terry, T. Deep soil carbon: quantification and modeling in subsurface layers. Soil Sci. Soc. Am. J. 78, S1–S10 (2014).

    Google Scholar 

  • 64.

    Aalde, H. et al. Forest land. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 4 (IPCC, 2006).

  • 65.

    Aalde, H. et al. Generic methodologies applicable to multiple land-use categories. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (eds Paustian, K. et al.) Ch. 2 (IPCC, 2006).

  • 66.

    Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage. 350, 107–128 (2015).

    Google Scholar 

  • 67.

    Pribyl, D. W. A critical review of the convential SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).

    ADS  CAS  Google Scholar 

  • 68.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    ADS  Google Scholar 

  • 70.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Google Scholar 

  • 71.

    Swedish National Forest Inventory Sample Plot Data https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/listor/sample-plot-data/ (SNFI, 2019).

  • 72.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 73.

    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

  • 74.

    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    MATH  Google Scholar 

  • 75.

    Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

    CAS  PubMed  Google Scholar 

  • 76.

    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  • 77.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Shono, K., Cadaweng, E. A. & Durst, P. B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15, 620–626 (2007).

    Google Scholar 

  • 79.

    Nieuwenhuis, M. Terminology of forest management. In International Union of Forest Research Organizations World Series Vol. 9-en (IUFRO, 2000).

  • 80.

    Winrock International AFOLU Carbon Calculator. The Agroforestry Tool: Underlying Data and Methods (USAID and Winrock International, 2014).

  • 81.

    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 17, 451–459 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    China’s researchers have valuable experiences that the world needs to hear about

    Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils