in

Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline–alkaline environment

  • 1.

    Lovley, D. R. Electromicrobiology. Annu. Rev. Microbiol 66, 391–409 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Nealson, K. H. & Rowe, A. R. Electromicrobiology: realities, grand challenges, goals, and predictions. Micro. Biotechnol. 9, 595–600 (2016).

    Article  Google Scholar 

  • 3.

    Nealson, K. H. Bioelectricity (electromicrobiology) and sustainability. Micro. Biotechnol. 10, 1114–1119 (2017).

    CAS  Article  Google Scholar 

  • 4.

    Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol 17, 307–319 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Lonergan, D. J. et al. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178, 2402–2408 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Lovley, D. R., Phillips, E. J. P., Caccavo, F., Nealson, K. H. & Myers, C. Acetate oxidation by dissimilatory Fe(III) reducers. Appl. Environ. Microbiol 58, 3205–3208 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Myers, C. R., Nealson, K. H. & June, I. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1322 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Rotaru, A. E. et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Kato, S., Hashimoto, K. & Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad Sci. USA 109, 10042–10046 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Katuri, K. P. et al. Dual-function electrocatalytic and macroporous hollow fiber cathode for converting water streams to valuable resources using microbial electrochemical systems. Adv. Mater. 30, 1707072 (2018).

    Article  CAS  Google Scholar 

  • 11.

    Pandey, P. et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energ. 168, 706–723 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Chiranjeevi, P. & Patil, S. A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol. Adv. 39, 107468 (2020).

  • 13.

    Kiran, R. & Patil, S. A. in Introduction to Biofilm Engineering, Vol. 1323 (eds Rathinam, N. K. & Sani, R. K.) 159–186 (ACS: Symposium Series, 2019).

  • 14.

    Rowe, A. R. et al. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring. Environ. Microbiol. 19, 2272–2285 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Shrestha, N. et al. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour. Technol. 255, 318–330 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Dopson, M., Ni, G. & Sleutels, T. H. J. A. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol. Rev. 40, 164–181 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Pierra, M., Carmona-martínez, A. A., Trably, E., Godon, J. & Bernet, N. Bioelectrochemistry specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Bioelectrochemistry 106, 182–189 (2015).

    Article  CAS  Google Scholar 

  • 18.

    Alqahtani, M. F. et al. Enrichment of Marinobacter sp. and halophilic homoacetogens at biocathode of microbial electrosynthesis systems inoculated with Red-Sea brine pool. Front. Microbiol. 109, 2563 (2019).

    Article  Google Scholar 

  • 19.

    Shehab et al. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour. Technol. 239, 82–86 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Sulonen, M. L. K., Kokko, M. E., Lakaniemi, A. & Puhakka, J. A. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard Mater. 284, 182–189 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Badalamenti, J. P., Krajmalnik-Brown, R. & Torres, I. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. mBio 4, e00144–13 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 75, 885 (2009).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 23.

    Parameswaran, P., Bry, T., Popat, S. C., Lusk, B. G. & Rittmann, B. E. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 47, 4934–4940 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Pillot, G. et al. Specific enrichment of hyperthermophilic electroactive Archaea from a deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259, 304–311 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Cerqueira, T. et al. Sediment microbial diversity of three deep-sea hydrothermal vents southwest of the azores. Micro. Ecol. 74, 332–349 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Jangir, Y. et al. In situ electrochemical studies of the terrestrial deep subsurface biosphere at the Sanford Underground Research Facility, South Dakota, USA. Front Energy Res 7, 1–17 (2019).

    Article  Google Scholar 

  • 27.

    Carmona-Martinez, A. A., Pierra, M., Trably, E. & Bernet, N. High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus. Phys. Chem. Chem. Phys. 15, 19699–19707 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Abrevaya, X. C., Sacco, N., Mauas, P. J. D. & Cortón, E. Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles 15, 633–642 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Ledezma, P., Lu, Y. & Freguia, S. Electroactive haloalkaliphiles exhibit exceptional tolerance to free ammonia. FEMS Microbiol. Lett. 365, 1–6 (2018).

    Article  CAS  Google Scholar 

  • 30.

    Kumar, S. K., Feria, S. O., Ramírez, T. J., Seijas, R. N. & Varaldo, P. H. M. Electrochemical, and chemical enrichment methods of a sodic-saline inoculum for microbial fuel cells. Int. J. Hydrog. Energy 38, 12600–12609 (2013).

    Article  CAS  Google Scholar 

  • 31.

    Borul, S. B. Study of water quality of Lonar Lake. J. Chem. Pharm. Res. 4, 1716–1718 (2012).

    CAS  Google Scholar 

  • 32.

    Jadhav, R. D. & Mali, H. B. A search for the source of high content of sodium chloride (NaCl) at Crater Lake Lonar, Maharashtra, India. Int. J. Adv. Res. Ideas Innov. Technol. 4, 255–261 (2018).

    Google Scholar 

  • 33.

    Wani, A. A. et al. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. Res. Microbiol. 157, 928–937 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Joshi, A. A. et al. Cultivable bacterial diversity of alkaline Lonar Lake. India Microbiol. Ecol. 55, 163–172 (2008).

    Article  Google Scholar 

  • 35.

    Paul, D. et al. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite Crater Lake within basalt rock. Front. Microbiol. 6, 1–12 (2016).

    Article  Google Scholar 

  • 36.

    Misra, S. et al. Geochemical identification of impactor for Lonar crater, India. Meteorit. Planet Sci. 1018, 1001–1018 (2009).

    Article  Google Scholar 

  • 37.

    Koshy, N. et al. Characterization of the soil samples from the Lonar crater. India Geotech. Eng. 49, 99–105 (2018).

    Google Scholar 

  • 38.

    Yee, M. O., Deutzmann, J., Spormann, A. & Rotaru, A. Cultivating electroactive microbes—from field to bench. Nanotechnology 31, 174003 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Korth, B. & Harnisch, F. Spotlight on the energy harvest of electroactive microorganisms: the impact of the applied anode potential. Front. Microbiol. 10, 1–9 (2019).

    Article  Google Scholar 

  • 40.

    Parot, S., Delia, M. L. & Bergel, A. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour. Technol. 99, 4809–4816 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Torres, C. I. et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ. Sci. Technol. 43, 9519–9524 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Babu, P., Chandel, A. K. & Singh, O. V. in Extremophiles and Their Applications in Medical Processes (eds Babu, P., Chandel, A. K. & Singh, O.V.) 9–24 (Springer, 2015).

  • 43.

    Harnisch, F. & Freguia, S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem. Asian J. 7, 466–475 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Peng, L. et al. Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer. Electrochim. Acta 191, 743–749 (2016).

    CAS  Article  Google Scholar 

  • 45.

    Marsili, E., Sun, J. & Bond, D. R. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of the growth stage and imposed electrode potential. Electroanalysis 22, 865–874 (2010).

    CAS  Article  Google Scholar 

  • 46.

    Yoho, R. A., Popat, S. C., Rago, L. & Guisasola, A. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31, 12552–12559 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Schroder, U. & Harnisch, F. In Encyclopedia of Applied Electrochemistry (eds Kreysa, G., Ota, K. & Savinell, R. F.) 120–126 (Springer, New York, 2014).

  • 48.

    Patil, S. A., Harnisch, F., Kapadnis, B. & Schröder, U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature on the formation and performance. Biosens. Bioelectron. 26, 803–808 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Liu, Y., Climent, V., Berná, A. & Feliu, J. M. Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 23, 387–394 (2011).

    CAS  Article  Google Scholar 

  • 50.

    Huang, L., Hwang, A. & Phillips, J. Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections. J. Food Sci. 76, 553–560 (2011).

    Article  CAS  Google Scholar 

  • 51.

    Labelle, E. & Bond, D. R. In Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Applications (eds Rabaey, K., Angenent, I., Schroder, U. & Keller, J.) 137–152 (IWA Publishing, London, 2005).

  • 52.

    Patil, S. A., Hägerhäll, C. & Gorton, L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bio Anal. Rev. 4, 159–192 (2012).

    Article  Google Scholar 

  • 53.

    Richter, H. et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2, 506–516 (2009).

    CAS  Article  Google Scholar 

  • 54.

    Katuri, K. P., Rengaraj, S., Kavanagh, P., O’Flaherty, V. & Leech, D. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods. Langmuir 28, 7904–7913 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Fricke, K., Harnisch, F. & Schroder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 1, 144–147 (2008).

    CAS  Article  Google Scholar 

  • 56.

    Harnisch, F. et al. Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy Environ. Sci. 4, 1265–1267 (2011).

    CAS  Article  Google Scholar 

  • 57.

    Carmona-Martinez, A. A. et al. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81, 74–80 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Firer-Sherwood, M., Pulcu, G. S. & Elliott, S. J. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J. Biol. Inorg. Chem. 13, 849–854 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A. & Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284, 28865–28873 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Holmes, D. E., Nevin, K. P. & Lovley, D. R. Comparison of nifD, recA, gyrB and fusA genes within the family Geobacteraceae Fam. nov. Int. J. Syst. Evol. Microbiol 54, 1591–1599 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Greene, A. C., Patel, B. K. C. & Yacob, S. Anaerobic Fe (III) – and Mn (IV) -reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int. J. Syst. Evol. Microbiol. 59, 781–785 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Badalamenti, J. P., Summers, Z. M., Chan, C. H., Gralnick, J. A. & Bond, D. R. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front. Microbiol. 7, 1–11 (2016).

    Article  Google Scholar 

  • 63.

    Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P. & Yogalakshmi, K. N. Treatment of seafood processing wastewater using up-flow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J. Environ. Manag. 180, 351–358 (2016).

    CAS  Article  Google Scholar 

  • 64.

    Monzon, O. et al. Microbial fuel cell fed by Barnett Shale produced water: power production by hypersaline autochthonous bacteria and coupling to a desalination unit. Biochem. Eng. J. 117, 87–91 (2017).

    CAS  Article  Google Scholar 

  • 65.

    Kevbrin, V. V., Zhilina, T. N., Rainey, F. A. & Zavarzin, G. A. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from Soda Lake deposits. Curr. Microbiol. 37, 94–100 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Mei, N. et al. Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int. J. Syst. Evol. Microbiol. 66, 4464–4470 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Pasupuleti, S. B., Srikanth, S., Dominguez-Benetton, X., Mohan, S. V. & Pant, D. Dual gas diffusion cathode design for Microbial Fuel Cell (MFC): optimizing the suitable mode of operation in terms of biochemical & bioelectro-kinetic evaluation. J. Chem. Technol. Biotechnol. 91, 624–639 (2016).

    CAS  Article  Google Scholar 

  • 68.

    Srikanth, S. et al. Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrodes. Bioresour. Technol. 265, 45–51 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Patil, S. A. et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance, and composition. Bioresour. Technol. 102, 9683–9690 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Feng, Y., Yang, Q., Wang, X. & Logan, B. E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 195, 1841–1844 (2010).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Individual species provide multifaceted contributions to the stability of ecosystems

    Superconductor technology for smaller, sooner fusion