in

Microbial transmission in animal social networks and the social microbiome

  • 1.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    CAS  PubMed  Google Scholar 

  • 2.

    Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Google Scholar 

  • 5.

    Nicholson, J. K. et al. Host–gut microbiota metabolism interactions. Science 336, 1262–1267 (2012).

    CAS  PubMed  Google Scholar 

  • 6.

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).

    CAS  PubMed  Google Scholar 

  • 8.

    Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).

    PubMed  Google Scholar 

  • 10.

    Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  • 13.

    Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    PubMed  Google Scholar 

  • 14.

    Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).

    CAS  PubMed  Google Scholar 

  • 15.

    Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. https://doi.org/10.1111/brv.12603 (2020).

  • 16.

    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    CAS  PubMed  Google Scholar 

  • 18.

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Hill, C. J. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  • 23.

    Archie, E. A. & Tung, J. Social behavior and the microbiome. Curr. Opin. Behav. Sci. 6, 28–34 (2015).

    Google Scholar 

  • 24.

    Montiel-Castro, A. J., González-Cervantes, R. M., Bravo-Ruiseco, G. & Pacheco-López, G. The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7, 70 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Münger, E., Montiel-Castro, A. J., Langhans, W. & Pacheco-López, G. Reciprocal interactions between gut microbiota and host social behaviour. Front. Integr. Neurosci. 12, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Krause, J., Ruxton, G. D. & Ruxton, G. D. Living in Groups (Oxford Univ. Press, 2002).

  • 27.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  • 28.

    Clayton, J. B. et al. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).

    PubMed  Google Scholar 

  • 29.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 2001).

  • 30.

    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).

    PubMed  Google Scholar 

  • 31.

    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Chisholm, C., Lindo, Z. & Gonzalez, A. Metacommunity diversity depends on connectivity and patch arrangement in heterogeneous habitat networks. Ecography 34, 415–424 (2011).

    Google Scholar 

  • 33.

    Forbes, A. E. & Chase, J. M. The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos 96, 433–440 (2002).

    Google Scholar 

  • 34.

    Gascuel, F., Laroche, F., Bonnet-Lebrun, A. S. & Rodrigues, A. S. The effects of archipelago spatial structure on island diversity and endemism: predictions from a spatially-structured neutral model. Evolution 70, 2657–2666 (2016).

    PubMed  Google Scholar 

  • 35.

    Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).

    CAS  PubMed  Google Scholar 

  • 36.

    Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).

    PubMed  Google Scholar 

  • 37.

    Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).

    PubMed  Google Scholar 

  • 38.

    Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl Acad. Sci. USA 114, 13768–13773 (2017).

    CAS  PubMed  Google Scholar 

  • 39.

    Miller, E. T., Svanbäck, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).

    PubMed  Google Scholar 

  • 40.

    Robinson, C. D. et al. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 16, e2006893 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Altizer, S. et al. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 34, 517–547 (2003).

    Google Scholar 

  • 42.

    White, L. A., Forester, J. D. & Craft, M. E. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol. Rev. 92, 389–409 (2017).

    PubMed  Google Scholar 

  • 43.

    Schmid-Hempel, P. Parasites and their social hosts. Trends Parasitol. 33, 453–462 (2017).

    PubMed  Google Scholar 

  • 44.

    Browne, H. P., Neville, B. A., Forster, S. C. & Lawley, T. D. Transmission of the gut microbiota: spreading of health. Nat. Rev. Microbiol. 15, 531–543 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl Acad. Sci. USA 113, 9345–9350 (2016).

    CAS  PubMed  Google Scholar 

  • 46.

    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    CAS  PubMed  Google Scholar 

  • 47.

    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).

    PubMed  Google Scholar 

  • 48.

    Lombardo, M. P. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav. Ecol. Sociobiol. 62, 479–497 (2008).

    Google Scholar 

  • 49.

    Troyer, K. Microbes, herbivory and the evolution of social behavior. J. Theor. Biol. 106, 157–169 (1984).

    Google Scholar 

  • 50.

    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).

    PubMed Central  Google Scholar 

  • 51.

    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 19, 1141–1152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017).

    PubMed  Google Scholar 

  • 55.

    Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017).

    PubMed  Google Scholar 

  • 56.

    Amato, K. R. Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).

    Google Scholar 

  • 57.

    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).

    Google Scholar 

  • 58.

    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).

    CAS  PubMed  Google Scholar 

  • 59.

    Raulo, A. et al. Social behaviour and gut microbiota in red‐bellied lemurs (Eulemur rubriventer): in search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).

    PubMed  Google Scholar 

  • 60.

    Gogarten, J. F. et al. Factors influencing bacterial microbiome composition in a wild non-human primate community in Taï National Park, Côte d’Ivoire. ISME J. 12, 2559–2574 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Barberán, A. et al. The ecology of microscopic life in household dust. Proc. R. Soc. B 282, 20151139 (2015).

    Google Scholar 

  • 65.

    Fujimura, K. E. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl Acad. Sci. USA 111, 805–810 (2014).

    CAS  PubMed  Google Scholar 

  • 66.

    Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl Acad. Sci. USA 107, 6477–6481 (2010).

    CAS  PubMed  Google Scholar 

  • 67.

    Hoisington, A. J., Brenner, L. A., Kinney, K. A., Postolache, T. T. & Lowry, C. A. The microbiome of the built environment and mental health. Microbiome 3, 60 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Lax, S. et al. Forensic analysis of the microbiome of phones and shoes. Microbiome 3, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Lax, S., Nagler, C. R. & Gilbert, J. A. Our interface with the built environment: immunity and the indoor microbiota. Trends Immunol. 36, 121–123 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Kort, R. et al. Shaping the oral microbiota through intimate kissing. Microbiome 2, 41 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    de Waal, F. B. M. Primates—a natural heritage of conflict resolution. Science 289, 586–590 (2000).

    PubMed  Google Scholar 

  • 72.

    Gardy, J. L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    CAS  PubMed  Google Scholar 

  • 73.

    Dill-McFarland, K. et al. Close social relationships correlate with human gut microbiota composition. Sci. Rep. 9, 703 (2018).

    Google Scholar 

  • 74.

    Brito, I. L. & Alm, E. J. Tracking strains in the microbiome: insights from metagenomics and models. Front. Microbiol. 7, 712 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. MSystems 2, e00164–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Brito, I. L. et al. Transmission of human-associated microbiota along family and social networks. Nat. Microbiol. 4, 964–971 (2019).

    CAS  PubMed  Google Scholar 

  • 78.

    Johnson, K. V.-A. Gut microbiome composition and diversity are related to human personality traits. Hum. Microbiome J. 15, 100069 (2020).

    Google Scholar 

  • 79.

    Janzen, D. H. Host plants as islands in evolutionary and contemporary time. Am. Nat. 102, 592–595 (1968).

    Google Scholar 

  • 80.

    Kuris, A. M., Blaustein, A. R. & Alio, J. J. Hosts as islands. Am. Nat. 116, 570–586 (1980).

    Google Scholar 

  • 81.

    Freeland, W. J. Primate social groups as biological islands. Ecology 60, 719–728 (1979).

    Google Scholar 

  • 82.

    Trosvik, P. et al. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome 6, 84 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Degnan, P. H. et al. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc. Natl Acad. Sci. USA 109, 13034–13039 (2012).

    CAS  PubMed  Google Scholar 

  • 84.

    Amaral, W. Z. et al. Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom. Med. 79, 888–897 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 85.

    Orkin, J. D., Webb, S. E. & Melin, A. D. Small to modest impact of social group on the gut microbiome of wild Costa Rican capuchins in a seasonal forest. Am. J. Primatol. 81, e22985 (2019).

    CAS  PubMed  Google Scholar 

  • 86.

    Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring‐tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892 (2016).

    CAS  PubMed  Google Scholar 

  • 87.

    Goodfellow, C. K. et al. Divergence in gut microbial communities mirrors a social group fission event in a black‐and‐white colobus monkey (Colobus vellerosus). Am. J. Primatol. 81, e22966 (2019).

    CAS  PubMed  Google Scholar 

  • 88.

    Wikberg, E. C., Christie, D., Sicotte, P. & Ting, N. Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim. Behav. 163, 17–31 (2020).

    Google Scholar 

  • 89.

    Springer, A. et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol. Evol. 7, 5732–5745 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 90.

    Antwis, R. E., Lea, J. M., Unwin, B. & Shultz, S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome 6, 207 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 91.

    Grosser, S. et al. Fur seal microbiota are shaped by the social and physical environment, show mother–offspring similarities and are associated with host genetic quality. Mol. Ecol. 28, 2406–2422 (2019).

    CAS  PubMed  Google Scholar 

  • 92.

    Leung, M. H., Wilkins, D. & Lee, P. K. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci. Rep. 5, 11845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 93.

    Altermatt, F. & Holyoak, M. Spatial clustering of habitat structure effects patterns of community composition and diversity. Ecology 93, 1125–1133 (2012).

    PubMed  Google Scholar 

  • 94.

    Brown, B. L. & Swan, C. M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 79, 571–580 (2010).

    CAS  PubMed  Google Scholar 

  • 95.

    Economo, E. P. & Keitt, T. H. Species diversity in neutral metacommunities: a network approach. Ecol. Lett. 11, 52–62 (2008).

    PubMed  Google Scholar 

  • 96.

    Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. A global model of island species–area relationships. Proc. Natl Acad. Sci. USA 116, 12337–12342 (2019).

    CAS  PubMed  Google Scholar 

  • 97.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    Relman, D. A. The human microbiome: ecosystem resilience and health. Nutr. Rev. 70, S2–S9 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 99.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    CAS  PubMed  Google Scholar 

  • 100.

    Johnson, K. V.-A. & Burnet, P. W. J. Microbiome: should we diversify from diversity? Gut Microbes 7, 455–458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 101.

    Moeller, A. H. et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 14, 340–345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 102.

    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).

    PubMed  Google Scholar 

  • 103.

    Clutton-Brock, T. H., Harvey, P. H. & Rudder, B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269, 797–800 (1977).

    CAS  PubMed  Google Scholar 

  • 104.

    Jašarević, E., Morrison, K. E. & Bale, T. L. Sex differences in the gut microbiome–brain axis across the lifespan. Philos. Trans. R. Soc. B 371, 20150122 (2016).

    Google Scholar 

  • 105.

    Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    CAS  PubMed  Google Scholar 

  • 106.

    Sapolsky, R. M. & Share, L. J. A pacific culture among wild baboons: its emergence and transmission. PLoS Biol. 2, e106 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 107.

    Silk, J. B., Altmann, J. & Alberts, S. C. Social relationships among adult female baboons (Papio cynocephalus) I. Variation in the strength of social bonds. Behav. Ecol. Sociobiol. 61, 183–195 (2006).

    Google Scholar 

  • 108.

    Silk, J. B., Alberts, S. C. & Altmann, J. Social relationships among adult female baboons (Papio cynocephalus) II. Variation in the quality and stability of social bonds. Behav. Ecol. Sociobiol. 61, 197–204 (2006).

    Google Scholar 

  • 109.

    Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 110.

    Nuriel-Ohayon, M. et al. Progesterone increases Bifidobacterium relative abundance during late pregnancy. Cell Rep. 27, 730–736 (2019).

    CAS  PubMed  Google Scholar 

  • 111.

    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    CAS  PubMed  Google Scholar 

  • 112.

    Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: where do we go from here? BioEssays 36, 847–854 (2014).

    PubMed  Google Scholar 

  • 113.

    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 114.

    Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).

    Google Scholar 

  • 115.

    Gese, E. M. & Ruff, R. L. Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors. Anim. Behav. 54, 1155–1166 (1997).

    CAS  PubMed  Google Scholar 

  • 116.

    Barja, I., Miguel, F. D. & Barcena, F. Faecal marking behaviour of Iberian wolf in different zones of their territory. Folia Zool. 54, 21–29 (2005).

    Google Scholar 

  • 117.

    Barja, I. & List, R. Faecal marking behaviour in ringtails (Bassariscus astutus) during the non-breeding period: spatial characteristics of latrines and single faeces. Chemoecology 16, 219–222 (2006).

    Google Scholar 

  • 118.

    Brashares, J. S. & Arcese, P. Scent marking in a territorial African antelope: II. The economics of marking with faeces. Anim. Behav. 57, 11–17 (1999).

    CAS  PubMed  Google Scholar 

  • 119.

    Ruiz-Aizpurua, L., Planillo, A., Carpio, A. J., Guerrero-Casado, J. & Tortosa, F. S. The use of faecal markers for the delimitation of the European rabbit’s social territories (Oryctolagus cuniculus L.). Acta Ethol. 16, 157–162 (2013).

    Google Scholar 

  • 120.

    Marneweck, C., Jürgens, A. & Shrader, A. M. Ritualised dung kicking by white rhino males amplifies olfactory signals but reduces odour duration. J. Chem. Ecol. 44, 875–885 (2018).

    CAS  PubMed  Google Scholar 

  • 121.

    Cowl, V. B. & Shultz, S. Large brains and groups associated with high rates of agonism in primates. Behav. Ecol. 28, 803–810 (2017).

    Google Scholar 

  • 122.

    Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).

    CAS  PubMed  Google Scholar 

  • 123.

    Wilson, M. L. & Wrangham, R. W. Intergroup relations in chimpanzees. Annu. Rev. Anthropol. 32, 363–392 (2003).

    Google Scholar 

  • 124.

    Wrangham, R. W. & Glowacki, L. Intergroup aggression in chimpanzees and war in nomadic hunter-gatherers. Hum. Nat. 23, 5–29 (2012).

    PubMed  Google Scholar 

  • 125.

    Heinsohn, R. Group territoriality in two populations of African lions. Anim. Behav. 53, 1143–1147 (1997).

    CAS  PubMed  Google Scholar 

  • 126.

    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav. 78, 359–370 (2009).

    Google Scholar 

  • 127.

    Cassidy, K. A., MacNulty, D. R., Stahler, D. R., Smith, D. W. & Mech, L. D. Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park. Behav. Ecol. 26, 1352–1360 (2015).

    Google Scholar 

  • 128.

    Mullon, C., Keller, L. & Lehmann, L. Social polymorphism is favoured by the co-evolution of dispersal with social behaviour. Nat. Ecol. Evol. 2, 132–140 (2018).

    PubMed  Google Scholar 

  • 129.

    Alberts, S. C. & Altmann, J. Balancing costs and opportunities: dispersal in male baboons. Am. Nat. 145, 279–306 (1995).

    Google Scholar 

  • 130.

    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).

    Google Scholar 

  • 131.

    Isbell, L. A. & Van Vuren, D. Differential costs of locational and social dispersal and their consequences for female group-living primates. Behaviour 133, 1–36 (1996).

    Google Scholar 

  • 132.

    Pusey, A. E. Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol. Evol. 2, 295–299 (1987).

    CAS  PubMed  Google Scholar 

  • 133.

    Pusey, A. E. & Packer, C. The evolution of sex-biased dispersal in lions. Behaviour 101, 275–310 (1987).

    Google Scholar 

  • 134.

    Cozzi, G., Maag, N., Börger, L., Clutton‐Brock, T. H. & Ozgul, A. Socially informed dispersal in a territorial cooperative breeder. J. Anim. Ecol. 87, 838–849 (2018).

    PubMed  Google Scholar 

  • 135.

    Dosmann, A., Bahet, N. & Gordon, D. M. Experimental modulation of external microbiome affects nestmate recognition in harvester ants (Pogonomyrmex barbatus). PeerJ 4, e1566 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 136.

    Matsuura, K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92, 20–26 (2001).

    Google Scholar 

  • 137.

    Bentley‐Condit, V. K., Moore, T. & Smith, E. O. Analysis of infant handling and the effects of female rank among Tana River adult female yellow baboons (Papio cynocephalus cynocephalus) using permutation/randomization tests. Am. J. Primatol. 55, 117–130 (2001).

    PubMed  Google Scholar 

  • 138.

    Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).

    CAS  PubMed  Google Scholar 

  • 139.

    Maestripieri, D. Social structure, infant handling, and mothering styles in group-living Old World monkeys. Int. J. Primatol. 15, 531–553 (1994).

    Google Scholar 

  • 140.

    Silk, J. B. Why are infants so attractive to others? The form and function of infant handling in bonnet macaques. Anim. Behav. 57, 1021–1032 (1999).

    CAS  PubMed  Google Scholar 

  • 141.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    PubMed  Google Scholar 

  • 142.

    Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).

    CAS  PubMed  Google Scholar 

  • 143.

    Dettmer, A. M., Allen, J. M., Jaggers, R. M. & Bailey, M. T. A descriptive analysis of gut microbiota composition in differentially reared infant rhesus monkeys (Macaca mulatta) across the first 6 months of life. Am. J. Primatol. 81, e22969 (2019).

    CAS  PubMed  Google Scholar 

  • 144.

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 145.

    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 146.

    Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 147.

    Moeller, A. H. et al. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 23, 1715–1720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 148.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  Google Scholar 

  • 149.

    Farine, D. R., Garroway, C. J. & Sheldon, B. C. Social network analysis of mixed-species flocks: exploring the structure and evolution of interspecific social behaviour. Anim. Behav. 84, 1271–1277 (2012).

    Google Scholar 

  • 150.

    Goodale, E. & Kotagama, S. W. Vocal mimicry by a passerine bird attracts other species involved in mixed-species flocks. Anim. Behav. 72, 471–477 (2006).

    Google Scholar 

  • 151.

    Krebs, J. R. Social learning and the significance of mixed-species flocks of chickadees (Parus spp.). Can. J. Zool. 51, 1275–1288 (1973).

    Google Scholar 

  • 152.

    Pays, O., Ekori, A. & Fritz, H. On the advantages of mixed-species groups: impalas adjust their vigilance when associated with larger prey herbivores. Ethology 120, 1207–1216 (2014).

    Google Scholar 

  • 153.

    Stensland, E. V. A., Angerbjörn, A. & Berggren, P. E. R. Mixed species groups in mammals. Mammal. Rev. 33, 205–223 (2003).

    Google Scholar 

  • 154.

    Terborgh, J. Mixed flocks and polyspecific associations: costs and benefits of mixed groups to birds and monkeys. Am. J. Primatol. 21, 87–100 (1990).

    PubMed  Google Scholar 

  • 155.

    Goodale, E. et al. Mixed company: a framework for understanding the composition and organization of mixed‐species animal groups. Biol. Rev. https://doi.org/10.1111/brv.12591 (2020).

  • 156.

    Venkataraman, V. V., Kerby, J. T., Nguyen, N., Ashenafi, Z. T. & Fashing, P. J. Solitary Ethiopian wolves increase predation success on rodents when among grazing gelada monkey herds. J. Mammal. 96, 129–137 (2015).

    Google Scholar 

  • 157.

    de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 158.

    Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M. & Cunningham, P. Evidence for two independent domestications of cattle. Proc. Natl Acad. Sci. USA 91, 2757–2761 (1994).

    CAS  PubMed  Google Scholar 

  • 159.

    Almathen, F. et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc. Natl Acad. Sci. USA 113, 6707–6712 (2016).

    CAS  Google Scholar 

  • 160.

    Larson, G. et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621 (2005).

    CAS  PubMed  Google Scholar 

  • 161.

    Chessa, B. et al. Revealing the history of sheep domestication using retrovirus integrations. Science 324, 532–536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 162.

    Pollinger, J. P. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 163.

    Ellis, R. J. et al. Comparison of the distal gut microbiota from people and animals in Africa. PLoS ONE 8, e54783 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 164.

    Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6, e21313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 165.

    Reese, A. T. et al. Parallel signatures of mammalian domestication and human industrialization in the gut microbiota. Preprint at bioRxiv https://doi.org/10.1101/611483 (2019).

  • 166.

    Caruso, R., Ono, M., Bunker, M. E., Núñez, G. & Inohara, N. Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice. Cell Rep. 27, 3401–3412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 167.

    Hilbert, T. et al. Vendor effects on murine gut microbiota influence experimental abdominal sepsis. J. Surg. Res. 211, 126–136 (2017).

    PubMed  Google Scholar 

  • 168.

    McIntosh, C. M., Chen, L., Shaiber, A., Eren, A. M. & Alegre, M. L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 169.

    Rasmussen, T. S. et al. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses 11, 435 (2019).

    CAS  PubMed Central  Google Scholar 

  • 170.

    Hufeldt, M. R., Nielsen, D. S., Vogensen, F. K., Midtvedt, T. & Hansen, A. K. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 60, 336–347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 171.

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 172.

    Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 173.

    Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl Acad. Sci. USA 113, 2235–2240 (2016).

    CAS  PubMed  Google Scholar 

  • 174.

    Robertson, S. J. et al. Comparison of co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep. 27, 1910–1919 (2019).

    CAS  PubMed  Google Scholar 

  • 175.

    Laukens, D., Brinkman, B. M., Raes, J., De Vos, M. & Vandenabeele, P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev. 40, 117–132 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 176.

    Campbell, J. H. et al. Host genetic and environmental effects on mouse intestinal microbiota. ISME J. 6, 2033–2044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 177.

    Hildebrand, F. et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14, R4 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 178.

    Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet and environmental reservoirs. Cell Host Microbe 26, 650–665 (2019).

    CAS  PubMed  Google Scholar 

  • 179.

    Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 180.

    Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  • 181.

    Bel, S. et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF−/− mice. Proc. Natl Acad. Sci. USA 111, 4964–4969 (2014).

    CAS  PubMed  Google Scholar 

  • 182.

    Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metabol. 22, 516–530 (2015).

    CAS  Google Scholar 

  • 183.

    McCafferty, J. et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 7, 2116–2125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 184.

    Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl Acad. Sci. USA 107, 18933–18938 (2010).

    CAS  PubMed  Google Scholar 

  • 185.

    Grieneisen, L. E. et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019).

    PubMed  Google Scholar 

  • 186.

    Knowles, S. C. L., Eccles, R. M. & Baltrūnaitė, L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol. Lett. 22, 826–837 (2019).

    CAS  PubMed  Google Scholar 

  • 187.

    Suzuki, T. A. et al. Host genetic determinants of the gut microbiota of wild mice. Mol. Ecol. 28, 3197–3207 (2019).

    CAS  PubMed  Google Scholar 

  • 188.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  Google Scholar 

  • 189.

    Zoetendal, E. G., Akkermans, A. D., Akkermans-van Vliet, W. M., de Visser, J. A. G. & de Vos, W. M. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis. 13, 129–134 (2001).

    Google Scholar 

  • 190.

    Fields, C. T., Chassaing, B., Paul, M. J., Gewirtz, A. T. & de Vries, G. J. Vasopressin deletion is associated with sex-specific shifts in the gut microbiome. Gut Microbes 9, 13–25 (2018).

    CAS  PubMed  Google Scholar 

  • 191.

    Khachatryan, Z. A. et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE 3, e3064 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 192.

    Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immmunol. 11, 76–82 (2010).

    CAS  Google Scholar 

  • 193.

    Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).

    CAS  PubMed  Google Scholar 

  • 194.

    Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 195.

    Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    CAS  PubMed  Google Scholar 

  • 196.

    Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 197.

    Shykoff, J. A. & Schmid-Hempel, P. Genetic relatedness and eusociality: parasite-mediated selection on the genetic composition of groups. Behav. Ecol. Sociobiol. 28, 371–376 (1991).

    Google Scholar 

  • 198.

    Shykoff, J. A. & Schmid-Hempel, P. Parasites and the advantage of genetic variability within social insect colonies. Proc. R. Soc. B 243, 55–58 (1991).

    Google Scholar 

  • 199.

    Perofsky, A. C., Lewis, R. J. & Meyers, L. A. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 13, 50–63 (2019).

    PubMed  Google Scholar 

  • 200.

    Clutton‐Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool. 183, 1–39 (1977).

    Google Scholar 

  • 201.

    Janson, C. H. & Goldsmith, M. L. Predicting group size in primates: foraging costs and predation risks. Behav. Ecol. 6, 326–336 (1995).

    Google Scholar 

  • 202.

    Ayres, J. M. & Clutton-Brock, T. H. River boundaries and species range size in Amazonian primates. Am. Nat. 140, 531–537 (1992).

    CAS  PubMed  Google Scholar 

  • 203.

    King, S. L. et al. Bottlenose dolphins retain individual vocal labels in multi-level alliances. Curr. Biol. 28, 1993–1999.e3 (2018).

    CAS  PubMed  Google Scholar 

  • 204.

    Lusseau, D. & Newman, M. E. Identifying the role that animals play in their social networks. Proc. R. Soc. B 271, S477–S481 (2004).

    PubMed  Google Scholar 

  • 205.

    Rendell, L. & Whitehead, H. Culture in whales and dolphins. Behav. Brain Sci. 24, 309–324 (2001).

    CAS  PubMed  Google Scholar 

  • 206.

    Baird, R. W. & Dill, L. M. Ecological and social determinants of group size in transient killer whales. Behav. Ecol. 7, 408–416 (1996).

    Google Scholar 

  • 207.

    Brent, L. J. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).

    CAS  PubMed  Google Scholar 

  • 208.

    Fox, K. C., Muthukrishna, M. & Shultz, S. The social and cultural roots of whale and dolphin brains. Nat. Ecol. Evol. 1, 1699–1705 (2017).

    PubMed  Google Scholar 

  • 209.

    Guinet, C. Intentional stranding apprenticeship and social play in killer whales (Orcinus orca). Can. J. Zool. 69, 2712–2716 (1991).

    Google Scholar 

  • 210.

    Hoelzel, A. R. et al. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 24, 1407–1415 (2007).

    CAS  PubMed  Google Scholar 

  • 211.

    Apprill, A. et al. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS ONE 9, e90785 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 212.

    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 213.

    Dudek, N. K. et al. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762 (2017).

    CAS  PubMed  Google Scholar 

  • 214.

    Sanders, J. G. et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat. Commun. 6, 8285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 215.

    Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 216.

    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 758 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 217.

    Escallón, C., Belden, L. K. & Moore, I. T. The cloacal microbiome changes with the breeding season in a wild bird. Integt. Organismal Biol. 1, oby009 (2019).

    Google Scholar 

  • 218.

    Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS  PubMed  Google Scholar 

  • 219.

    Borthagaray, A. I., Berazategui, M. & Arim, M. Disentangling the effects of local and regional processes on biodiversity patterns through taxon‐contingent metacommunity network analysis. Oikos 124, 1383–1390 (2015).

    Google Scholar 

  • 220.

    Milani, C. et al. Tracing mother–infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX. Microbiome 6, 145 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 221.

    Rheinbaben, F. V., Schünemann, S., Gross, T. & Wolff, M. H. Transmission of viruses via contact in a household setting: experiments using bacteriophage φX174 as a model virus. J. Hosp. Infect. 46, 61–66 (2000).

    CAS  PubMed  Google Scholar 

  • 222.

    Seed, K. D. et al. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 3, e03497 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 223.

    Mirzaei, M. K. et al. Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27, 199–212 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation