in

Mimicking climate warming effects on Alaskan soil microbial communities via gradual temperature increase

  • 1.

    Showstack, R. Climate Change Is “a Defining Issue of Our Time,” Joint Report States. Eos, Transactions American Geophysical Union 95, 87–87 (2014).

    • ADS
    • Google Scholar
  • 2.

    Pachauri, R. K., Reisinger, A. & Core Writing Team. Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC. (2007).

  • 3.

    Comiso, J. C. & Hall, D. K. Climate trends in the Arctic as observed from space: Climate trends in the Arctic as observed from space. Wiley Interdisciplinary Reviews: Climate Change 5, 389–409 (2014).

    • PubMed
    • Google Scholar
  • 4.

    Osborne, E., Richter-Menge, J. & Jeffries, M. Arctic Report Card 2018. https://www.arctic.noaa.gov/Report-Card (2018).

  • 5.

    Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters 16, 409–419 (2013).

    • PubMed
    • Google Scholar
  • 6.

    Dahlberg, A. et al. Fungi. in Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity (2013).

  • 7.

    Schadt, C. W., Martin, A. P., Lipson, D. A. & Schmidt, S. K. Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils. Science 301, 1359–1361 (2003).

  • 8.

    McMahon, S. K., Wallenstein, M. D. & Schimel, J. P. Microbial growth in Arctic tundra soil at −2 °C. Environmental Microbiology Reports 1, 162–166 (2009).

  • 9.

    Baughman, C. A., Mann, D. H., Verbyla, D. L. & Kunz, M. L. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects: Modeling ssols in arctic alaska. Journal of Geophysical Research: Biogeosciences 120, 1150–1164 (2015).

  • 10.

    Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J. & Taylor, D. L. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Molecular Ecology 23, 3258–3272 (2014).

  • 11.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    • PubMed
    • Google Scholar
  • 12.

    Cox, F., Newsham, K. K., Bol, R., Dungait, J. A. J. & Robinson, C. H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett. 19, 528–536 (2016).

    • PubMed
    • Google Scholar
  • 13.

    Pearce, D. A. et al. Microorganisms in the atmosphere over Antarctica: Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology 69, 143–157 (2009).

  • 14.

    Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology 12, 2998–3006 (2010).

  • 15.

    Bryant, J. A. et al. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. U. S. A. 105, 11505–11511 (2008).

  • 16.

    Siles, J. A. & Margesin, R. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? Microb. Ecol. 72, 207–220 (2016).

  • 17.

    Lanzen, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257 (2016).

  • 18.

    Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202 (2014).

    • Google Scholar
  • 19.

    Kotas, P., Santruckova, H., Elster, J. & Kastovska, E. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 15, 1879–1894 (2018).

  • 20.

    Geraldes, P., Pascoal, C. & Cassio, F. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecol. 5, 734–740 (2012).

    • Google Scholar
  • 21.

    Lulakova, P., Perez-Mon, C., Santruckova, H., Ruethi, J. & Frey, B. High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Front. Microbiol 10, 668 (2019).

  • 22.

    Sihi, D., Inglett, P. W. & Inglett, K. S. Warming rate drives microbial nutrient demand and enzyme expression during peat decomposition. Geoderma 336, 12–21 (2019).

  • 23.

    Sihi, D., Inglett, P. W., Gerber, S. & Inglett, K. S. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. 24, E259–E274 (2018).

    • ADS
    • Google Scholar
  • 24.

    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science, https://doi.org/10.7287/peerj.preprints.27295v2 (2018).

  • 25.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    • CAS
    • Google Scholar
  • 26.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6, 610–618 (2012).

  • 27.

    McMurdie, P. J. & Holmes, S. phyloseq: A bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac. Symp. Biocomput. 235–246 (2011).

  • 28.

    Gai, J. P. et al. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55, 145–151 (2012).

    • Google Scholar
  • 29.

    Shen, C., Ge, Y., Yang, T. & Chu, H. Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. J. Soils Sediments 17, 2449–2456 (2017).

    • CAS
    • Google Scholar
  • 30.

    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry 43, 1450–1455 (2011).

  • 31.

    Smith, C. R. et al. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecology and Evolution 6, 8075–8084 (2016).

  • 32.

    Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Canadian Journal of Microbiology 57, 303–315 (2011).

  • 33.

    Costello, E. K. & Schmidt, S. K. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environmental Microbiology 8, 1471–1486 (2006).

  • 34.

    Adamczyk, M. et al. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Frontiers in Microbiology 10 (2019).

  • 35.

    Ricketts, M. P., Poretsky, R. S., Welker, J. M. & Gonzalez-Meler, M. A. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska. SOIL 2, 459–474 (2016).

    • CAS
    • Google Scholar
  • 36.

    Ren, C. et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of The Total Environment 610–611, 750–758 (2018).

  • 37.

    Leifheit, E. F., Verbruggen, E. & Rillig, M. C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and Biochemistry 81, 323–328 (2015).

    • CAS
    • Google Scholar
  • 38.

    Rinnan, R., Michelsen, A., Baath, E. & Jonasson, S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob. Change Biol. 13, 28–39 (2007).

    • ADS
    • Google Scholar
  • 39.

    Allison, S. D., McGuire, K. L. & Treseder, K. K. Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biology and Biochemistry 42, 1872–1878 (2010).

    • CAS
    • Google Scholar
  • 40.

    Treseder, K. K., Marusenko, Y., Romero‐Olivares, A. L. & Maltz, M. R. Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology 22, 3395–3404 (2016).

  • 41.

    Darrouzet-Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecology and Evolution 9, 1820–1844 (2019).

  • 42.

    Varga, S., Finozzi, C., Vestberg, M. & Kytöviita, M.-M. Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza 25, 335–343 (2015).

  • 43.

    Lipson, D. A., Schadt, C. W. & Schmidt, S. K. Changes in Soil Microbial Community Structure and Function in an Alpine Dry Meadow Following Spring Snow Melt. Microb Ecol 43, 307–314 (2002).

  • 44.

    Natali, S. M. et al. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology 17, 1394–1407 (2011).

    • ADS
    • Google Scholar
  • 45.

    Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sensing of Environment 168, 301–315 (2015).

    • ADS
    • Google Scholar
  • 46.

    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9, 119–130 (2011).

  • 47.

    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7, 2061–8 (2013).


  • Source: Ecology - nature.com

    Transportation policymaking in Chinese cities

    Solar energy farms could offer second life for electric vehicle batteries