in

Mint companion plants enhance the attraction of the generalist predator Nesidiocoris tenuis according to its experiences of conspecific mint volatiles

  • 1.

    Vickers, C. E., Gershenzon, J., Lerdau, M. T. & Loreto, F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5, 283, https://doi.org/10.1038/nchembio.158 (2009).

  • 2.

    Veyrat, N., Robert, C. A. M., Turlings, T. C. J. & Erb, M. Herbivore intoxication as a potential primary function of an inducible volatile plant signal. J. Ecol. 104, 591–600, https://doi.org/10.1111/1365-2745.12526 (2015).

  • 3.

    Szendrei, Z. & Rodriguez-Saona, C. A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol. Exp. Appl. 134, 201–210, https://doi.org/10.1111/j.1570-7458.2009.00954.x (2010).

    • Article
    • Google Scholar
  • 4.

    Sobhy, I. S., Bruce, T. J. & Turlings, T. C. Priming of cowpea volatile emissions with defense inducers enhances the plant’s attractiveness to parasitoids when attacked by caterpillars. Pest Manag. Sci. 74, 966–977, https://doi.org/10.1002/ps.4796 (2018).

  • 5.

    Amo, L., Jansen, J. J., van Dam, N. M., Dicke, M. & Visser, M. E. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol. Lett. 16, 1348–1355, https://doi.org/10.1111/ele.12177 (2013).

    • Article
    • Google Scholar
  • 6.

    Aljbory, Z. & Chen, M.-S. Indirect plant defense against insect herbivores: a review. Insect Sci. 25, 2–23, https://doi.org/10.1111/1744-7917.12436 (2016).

  • 7.

    Reddy, G. V. P. In Biocommunication of Plants Vol. 14 Signaling and Communication in Plants (eds Günther Witzany & František Baluška) Ch. 15, 281–301 (Springer Berlin Heidelberg, 2012).

  • 8.

    Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol. Lett. 17, 388–400, https://doi.org/10.1111/ele.12224 (2014).

    • Article
    • Google Scholar
  • 9.

    Cortesero, A. M., Stapel, J. O. & Lewis, W. J. Understanding and manipulating plant attributes to enhance biological control. Biol. Control 17, 35–49, https://doi.org/10.1006/bcon.1999.0777 (2000).

    • Article
    • Google Scholar
  • 10.

    Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. In Weed and Pest Control – Conventional and New Challenges (eds. Sonia Soloneski & Marcelo Larramendy) 1–29 (InTech, 2013).

  • 11.

    Song, B. et al. Intercropping with aromatic plants decreases herbivore abundance, species richness, and shifts arthropod community trophic structure. Environ. Entomol. 41, 872–879, https://doi.org/10.1603/en12053 (2012).

    • Article
    • Google Scholar
  • 12.

    Song, B. et al. Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator–prey abundances. Biocontrol Sci. Technol. 23, 381–395, https://doi.org/10.1080/09583157.2013.763904 (2013).

    • Article
    • Google Scholar
  • 13.

    Togni, P. H. B. et al. Mechanisms underlying the innate attraction of an aphidophagous coccinellid to coriander plants: Implications for conservation biological control. Biol. Control 92, 77–84, https://doi.org/10.1016/j.biocontrol.2015.10.002 (2016).

    • Article
    • Google Scholar
  • 14.

    Togashi, K. et al. Mint companion plants attract the predatory mite Phytoseiulus persimilis. Sci. Rep. 9, 1704, https://doi.org/10.1038/s41598-018-38098-x (2019).

  • 15.

    McMurtry, J. A. & Croft, B. A. Life-styles of Phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291–321, https://doi.org/10.1146/annurev.ento.42.1.291 (1997).

  • 16.

    Batista, M. C. et al. Basil (Ocimum basilicum L.) attracts and benefits the green lacewing Ceraeochrysa cubana Hagen. Biol. Control 110, 98–106, https://doi.org/10.1016/j.biocontrol.2017.04.013 (2017).

    • Article
    • Google Scholar
  • 17.

    Parolin, P., Bresch, C., Poncet, C., Suay-Cortez, R. & Van Oudenhove, L. Testing basil as banker plant in IPM greenhouse tomato crops. Int. J. Pest Manag. 61, 235–242, https://doi.org/10.1080/09670874.2015.1042414 (2015).

    • Article
    • Google Scholar
  • 18.

    Calvo, J., Blockmans, K., Stansly, P. A. & Urbaneja, A. Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54, 237–246, https://doi.org/10.1007/s10526-008-9164-y (2009).

    • Article
    • Google Scholar
  • 19.

    Sanchez, J. A. Zoophytophagy in the plantbug Nesidiocoris tenuis. Agr. Forest Entomol. 10, 75–80, https://doi.org/10.1111/j.1461-9563.2007.00357.x (2008).

    • Article
    • Google Scholar
  • 20.

    Li, L.-R., Xue, R.-F., Wang, X.-J. & Zeng, F.-R. Predation of Nesidiocoris tenuis to Trialeurodes vaporariorum and Plutella xylostella. Journal of Agricultural University of Hebei 1, 21 (2008).

    • Google Scholar
  • 21.

    Torreno, H. S. Predation behavior and efficiency of the bug Cyrtopeltis tenuis (Hemiptera: Miridae), against the cutworm, Spodoptera litura (F). Philipp. Entomol. 9, 426 (1994).

    • Google Scholar
  • 22.

    Gavkare, O. & Sharma, P. L. Feeding potential of Nesidiocoris tenuis (Reuter) on the two-spotted spider mite, Tetranychus urticae Koch, under laboratory conditions. J. Agric. Urban Entomol. 32, 50–58, https://doi.org/10.3954/1523-5475-32.1.50 (2016).

    • Article
    • Google Scholar
  • 23.

    Hinomoto, N., Muraji, M., Noda, T., Shimizu, T. & Kawasaki, K. Identification of five Orius species in Japan by multiplex polymerase chain reaction. Biol. Control 31, 276–279, https://doi.org/10.1016/j.biocontrol.2004.07.002 (2004).

  • 24.

    Yano, E. In Nonpesticide Methods for Controlling Diseases and Insect Pests (ed. Peter A. C. Ooi) (Asian Productivity Organization, 2005).

  • 25.

    van Lenteren, J. C. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57, 1–20, https://doi.org/10.1007/s10526-011-9395-1 (2012).

    • Article
    • Google Scholar
  • 26.

    Komi, K. Biological control of pest insects in greenhouses use of natural enemy in Kochi Prefecture. Jpn. J. Pestic. Sci. 41, 69–73, https://doi.org/10.1584/jpestics.W15-49 (2016).

    • Article
    • Google Scholar
  • 27.

    Calvo, F. J., Lorente, M. J., Stansly, P. A. & Belda, J. E. Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol. Exp. Appl. 143, 111–119, https://doi.org/10.1111/j.1570-7458.2012.01238.x (2012).

    • Article
    • Google Scholar
  • 28.

    Urbaneja, A., González-Cabrera, J., Arnó, J. & Gabarra, R. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag. Sci. 68, 1215–1222, https://doi.org/10.1002/ps.3344 (2012).

  • 29.

    Oyama-Okubo, N. Analysis and classification of emitted scent compounds in leaves of Mentha cultivars. Bull. Natl. Inst. Flor. Sci. 12, 103–112 (2012).

    • Google Scholar
  • 30.

    Janssen, A. et al. Time scales of associating food and odor by predator communities in the field. Behav. Ecol. 25, 1123–1130, https://doi.org/10.1093/beheco/aru094 (2014).

    • Article
    • Google Scholar
  • 31.

    Rim, H., Uefune, M., Ozawa, R., Yoneya, K. & Takabayashi, J. Experience of plant infestation by the omnivorous arthropod Nesidiocoris tenuis affects its subsequent responses to prey-infested plant volatiles. BioControl 62, 233–242, https://doi.org/10.1007/s10526-017-9791-2 (2017).

  • 32.

    Glinwood, R., Ahmed, E., Qvarfordt, E. & Ninkovic, V. Olfactory learning of plant genotypes by a polyphagous insect predator. Oecologia 166, 637–647, https://doi.org/10.1007/s00442-010-1892-x (2011).

  • 33.

    Rim, H., Uefune, M., Ozawa, R. & Takabayashi, J. Olfactory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infested by prey: Specificity in prey developmental stages and prey species. Biol. Control 91, 47–54, https://doi.org/10.1016/j.biocontrol.2015.07.009 (2015).

    • Article
    • Google Scholar
  • 34.

    Song, B. et al. Behavioral responses of Aphis citricola (Hemiptera: Aphididae) and its natural enemy Harmonia axyridis (Coleoptera: Coccinellidae) to non-host plant volatiles. Fla. Entomol. 100, 411–421, https://doi.org/10.1653/024.100.0202 (2017).

  • 35.

    Drukker, B., Bruin, J., Jacobs, G., Kroon, A. & Sabelis, M. W. How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp. Appl. Acarol. 24, 881–895, https://doi.org/10.1023/A:1010645720829 (2000).

  • 36.

    Drukker, B., Bruin, J. & Sabelis, M. W. Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25, 260–265 (2000).

  • 37.

    Jürgens, A. & Bischoff, M. Changing odour landscapes: the effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Funct. Ecol. 31, 56–64, https://doi.org/10.1111/1365-2435.12774 (2017).

    • Article
    • Google Scholar
  • 38.

    Hilker, M. & Schröder, R. The relevance of background odor in resource location by insects: A behavioral approach. Bioscience 58, 308–316, https://doi.org/10.1641/b580406 (2008).

    • Article
    • Google Scholar
  • 39.

    Song, B. et al. Effects of intercropping with aromatic plants on the diversity and structure of an arthropod community in a pear orchard. BioControl 55, 741–751, https://doi.org/10.1007/s10526-010-9301-2 (2010).

    • Article
    • Google Scholar
  • 40.

    Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agrofor. Syst. 87, 273–285, https://doi.org/10.1007/s10457-012-9544-2 (2013).

    • Article
    • Google Scholar
  • 41.

    Mutisya, S., Saidi, M., Opiyo, A., Ngouajio, M. & Martin, T. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes. Agronomy 6, 42 (2016).

    • Article
    • Google Scholar
  • 42.

    Wan, H. H., Song, B. Z., Tang, G. B., Zhang, J. & Yao, Y. C. What are the effects of aromatic plants and meteorological factors on Pseudococcus comstocki and its predators in pear orchards? Agrofor. Syst. 89, 537–547, https://doi.org/10.1007/s10457-015-9789-7 (2015).

    • Article
    • Google Scholar
  • 43.

    Zhang, Z. et al. Effects of intercropping tea with aromatic plants on population dynamics of arthropods in Chinese tea plantations. J. Pest Sci. 90, 227–237, https://doi.org/10.1007/s10340-016-0783-2 (2017).

  • 44.

    Bates, D., Maechler, M. & Bolker, B. lme4: linear mixed-effects models using Eigen and S4. v. 1.1–7 (2014).

  • 45.

    R Core Team. R: A language and environment for statistical computing v. 3.4.2 (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  • 46.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363, https://doi.org/10.1002/bimj.200810425 (2008).


  • Source: Ecology - nature.com

    Researchers develop a roadmap for growth of new solar cells

    Simple, solar-powered water desalination