in

Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity

  • 1.

    Durski, K. N. et al. Emergence of monkeypox — West and Central Africa, 1970–2017. Morb. Mortal. Wkly Rep. 67, 306–310 (2018).

    • Article
    • Google Scholar
  • 2.

    Vaughan, A. et al. Two cases of monkeypox imported to the United Kingdom, September 2018. Eurosurveillance 23, 1800509 (2018).

  • 3.

    Erez, N. et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 25, 980–983 (2019).

  • 4.

    Ng, O. et al. A case of imported monkeypox in Singapore. Lancet Infect. Dis. 19, 1166 (2019).

  • 5.

    Nakazawa, Y. et al. A phylogeographic investigation of African monkeypox. Viruses 7, 2168–2184 (2015).

  • 6.

    Chen, N. et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340, 46–63 (2005).

  • 7.

    Parker, S., Nuara, A., Buller, R. & Schultz, D. Human monkeypox: an emerging zoonotic disease. Future Microbiol. 2, 17–34 (2007).

  • 8.

    Sklenovská, N. & Van Ranst, M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front. Public Health 6, 241 (2018).

  • 9.

    Yinka-Ogunleye, A. et al. Reemergence of human monkeypox in Nigeria, 2017. Emerg. Infect. Dis. 24, 1149–1151 (2018).

  • 10.

    von Magnus, P., Andersen, E., Petersen, K. & Birch-Andersen, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microbiol. Scand. 46, 156–176 (1959).

    • Article
    • Google Scholar
  • 11.

    Petersen, E. et al. Monkeypox — enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Int. J. Infect. Dis. 78, 78–84 (2019).

  • 12.

    Khodakevich, L., Jezek, Z. & Kinzanzka, K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet 327, 98–99 (1986).

    • Article
    • Google Scholar
  • 13.

    Radonić, A. et al. Fatal monkeypox in wild-living sooty mangabey, Cote d’Ivoire, 2012. Emerg. Infect. Dis. 20, 1009–1011 (2014).

  • 14.

    Tiee, M. S., Harrigan, R. J., Thomassen, H. A. & Smith, T. B. Ghosts of infections past: using archival samples to understand a century of monkeypox virus prevalence among host communities across space and time. R. Soc. Open Sci. 5, 171089 (2018).

  • 15.

    Leendertz, F. H. et al. Pathogens as drivers of population declines: the importance of systematic monitoring in great apes and other threatened mammals. Biol. Conserv. 131, 325–337 (2006).

    • Article
    • Google Scholar
  • 16.

    Wittig, R. M. in Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–7 (Springer, 2018).

  • 17.

    Gillespie, T. R., Nunn, C. L. & Leendertz, F. H. Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health. Am. J. Phys. Anthropol. 137, 53–69 (2008).

    • Article
    • Google Scholar
  • 18.

    Hoffmann, C. et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature 548, 82–85 (2017).

  • 19.

    Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).

  • 20.

    Reynolds, M. G. et al. Clinical manifestations of human monkeypox influenced by route of infection. J. Infect. Dis. 194, 773–780 (2006).

  • 21.

    Saijo, M. et al. Virulence and pathophysiology of the Congo Basin and West African strains of monkeypox virus in non-human primates. J. Gen. Virol. 90, 2266–2271 (2009).

  • 22.

    Monkeypox Fact Sheet (World Health Organization, 2019); https://www.who.int/news-room/fact-sheets/detail/monkeypox

  • 23.

    Huhn, G. D. et al. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin. Infect. Dis. 41, 1742–1751 (2005).

  • 24.

    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

  • 25.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

  • 26.

    Duchene, S. et al. Bayesian evaluation of temporal signal in measurably evolving populations. Preprint at bioRxiv https://doi.org/10.1101/810697 (2019).

  • 27.

    Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).

  • 28.

    Babkin, I. V. & Babkina, I. N. A retrospective study of the orthopoxvirus molecular evolution. Infect. Genet. Evol. 12, 1597–1604 (2012).

  • 29.

    Kerr, P. J. et al. Genomic and phenotypic characterization of myxoma virus from Great Britain reveals multiple evolutionary pathways distinct from those in Australia. PLoS Pathog. 13, e1006252 (2017).

  • 30.

    Duggan, A. T. et al. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).

  • 31.

    Porter, A. F., Duggan, A. T., Poinar, H. N. & Holmes, E. C. Characterization of two historic smallpox specimens from a Czech museum. Viruses 9, 2–5 (2017).

  • 32.

    Andersen, K. G. et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162, 738–750 (2015).

  • 33.

    Boesch, C. & Boesch-Achermann, H. The Chimpanzees of the Taï Forest (Oxford Univ. Press, 2000).

  • 34.

    Smithson, C., Purdy, A., Verster, A. J. & Upton, C. Prediction of steps in the evolution of variola virus host range. PLoS ONE 9, e91520 (2014).

  • 35.

    Schweneker, M. et al. The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. J. Virol. 86, 2323–2336 (2012).

  • 36.

    Hendrickson, R. C., Wang, C., Hatcher, E. L. & Lefkowitz, E. J. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2, 1933–1967 (2010).

  • 37.

    Reynolds, M. G., Guagliardo, S. A. J., Nakazawa, Y. J., Doty, J. B. & Mauldin, M. R. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects. Curr. Opin. Virol. 28, 108–115 (2018).

  • 38.

    Hoffmann, C., Stockhausen, M., Merkel, K., Calvignac-Spencer, S. & Leendertz, F. H. Assessing the feasibility of fly based surveillance of wildlife infectious diseases. Sci. Rep. 6, 37952 (2016).

  • 39.

    Calvignac-Spencer, S. et al. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol. Ecol. 22, 915–924 (2013).

  • 40.

    Gogarten, J. F. et al. Fly‐derived DNA and camera traps are complementary tools for assessing mammalian biodiversity. Environ. DNA 2, 63–76 (2020).

    • Article
    • Google Scholar
  • 41.

    Samuni, L., Preis, A., Deschner, T., Crockford, C. & Wittig, R. M. Reward of labor coordination and hunting success in wild chimpanzees. Commun. Biol. 1, 138 (2018).

  • 42.

    Stagegaard, J. et al. Seasonal recurrence of cowpox virus outbreaks in captive cheetahs (Acinonyx jubatus). PLoS ONE 12, e0187089 (2017).

  • 43.

    ProMED. Monkeypox – Africa (07): Liberia; archive no. 20180411.5740756. ProMED http://www.promedmail.org/post/5740756 (2018).

  • 44.

    Reil, D. et al. Puumala hantavirus infections in bank vole populations: host and virus dynamics in Central Europe. BMC Ecol. 17, 9 (2017).

  • 45.

    Aleman, J., Jarzyna, M. & Staver, A. Forest extent and deforestation in tropical Africa since 1900. Nat. Ecol. Evol. 2, 26–33 (2018).

  • 46.

    Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl Acad. Sci. USA 115, 7979–7984 (2018).

  • 47.

    Schroeder, K. & Nitsche, A. Multicolour, multiplex real-time PCR assay for the detection of human-pathogenic poxviruses. Mol. Cell. Probes 24, 110–113 (2010).

  • 48.

    Kurth, A. et al. Rat-to-elephant-to-human transmission of cowpox virus. Emerg. Infect. Dis. 14, 670–671 (2008).

  • 49.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

  • 50.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

  • 51.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

  • 52.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 53.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  • 54.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

  • 55.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  • 56.

    Zhao, K., Wohlhueter, R. M. & Li, Y. Finishing monkeypox genomes from short reads: assembly analysis and a neural network method. BMC Genomics 17, 497 (2016).

  • 57.

    Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

  • 58.

    Villesen, P. FaBox: an online toolbox for FASTA sequences. Mol. Ecol. Notes 7, 965–968 (2007).

  • 59.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and high-performance computing. Nat. Methods 9, 772 (2015).

  • 60.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 29, 307–321 (2010).

  • 61.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

  • 62.

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

  • 63.

    Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

  • 64.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    • Article
    • Google Scholar
  • 65.

    Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).

  • 66.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems http://igraph.org (2006).


  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants