in

Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus

  • 1.

    Higham, T. E. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr. Comp. Biol. 47, 82–95 (2007).

    PubMed  Article  Google Scholar 

  • 2.

    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229–249 (1986).

    Article  Google Scholar 

  • 3.

    Cooper, W. E. Jr. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 4.

    Darwin, C. The Voyage of the Beagle (Doubleday and Co, New York, 1962).

    Google Scholar 

  • 5.

    Arnold, E. N. Identifying the effects of history on adaptation – origins of different sand-diving techniques in lizards. J. Zool. 235, 351–388 (1995).

    Article  Google Scholar 

  • 6.

    Attum, O., Eason, P. & Cobbs, G. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68, 564–573 (2007).

    ADS  Article  Google Scholar 

  • 7.

    Kacoliris, F., Williams, J. & Molinari, A. Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60, 157–167 (2010).

    Article  Google Scholar 

  • 8.

    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).

    Article  Google Scholar 

  • 9.

    Losos, J. B. & Sinervo, B. The effect of morphology and perch diameter on sprint performance of Anolis Lizards. J. Exp. Biol. 145, 23–30 (1989).

    Google Scholar 

  • 10.

    Losos, J. B. & Irschick, D. J. The effect of perch diameter on escape behavior of Anolis lizards: laboratory predictions and field tests. Anim. Behav. 51, 593–602 (1996).

    Article  Google Scholar 

  • 11.

    Luke, C. Convergent evolution of lizard toe fringes. Biol. J. Linn. Soc. 27, 1–16 (1986).

    ADS  Article  Google Scholar 

  • 12.

    Carothers, J. H. An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40, 871–874 (1986).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Irschick, D. J. & Jayne, B. C. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J. Exp. Biol. 21, 273–287 (1998).

    Google Scholar 

  • 14.

    Korff, W. L. & McHenry, M. J. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J. Exp. Biol. 214, 122–130 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Bergmann, P. J. & Irschick, D. J. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64, 1569–1582 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Li, C., Hsieh, S. T. & Goldman, D. I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). J. Exp. Biol. 215, 3293–3308 (2012).

    PubMed  Article  Google Scholar 

  • 17.

    Zhao, E. M., Zhao, K. T. & Zhou, K. Y. Fauna Sinica, Reptilian Vol. 2, Squamata (Beijing Science Press, Beijing, Lacertilia, 1999).

    Google Scholar 

  • 18.

    Solovyeva, E. N. et al. Cenozoic aridization in Central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). Peer. J. 6, e4543 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 19.

    Jiang, Z. G. et al. Red List of China’s Vertebrates. Biodivers. Sci. 24, 550–551 (2016).

    Google Scholar 

  • 20.

    Du, W. G., Lin, C. X., Shou, L. & Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 26, 41–46 (2005).

    CAS  Google Scholar 

  • 21.

    Pérez, A. & Fabré, N. N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: skull and otolith shape variation. J. Fish Biol. 82, 1453–1468 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Higham, T. E. & Russel, A. P. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol. J. Linn. Soc. 101, 860–869 (2010).

    Article  Google Scholar 

  • 23.

    King, R. B. Analyzing the relationship between clutch size and female body size in reptiles. J. Herpetol. 34, 148–150 (2000).

    Article  Google Scholar 

  • 24.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).

    MATH  Google Scholar 

  • 25.

    Imdadullah, M., Aslam, M. & Altaf, S. mctest: an R package for detection of collinearity among regressors. R. J. 8, 495–505 (2016).

    Article  Google Scholar 

  • 26.

    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

    Article  Google Scholar 

  • 27.

    Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Ass. 89, 122–127 (1994).

    MathSciNet  MATH  Article  Google Scholar 

  • 28.

    Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. 2, 97–106 (2010).

    Article  Google Scholar 

  • 29.

    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Mitchell, R. J. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6, 123–129 (1992).

    Article  Google Scholar 

  • 31.

    Wootton, J. T. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75, 151–165 (1994).

    Article  Google Scholar 

  • 32.

    Arnold, S. J. Species densities of predators and their prey. Am. Nat. 106, 220–236 (1972).

    Article  Google Scholar 

  • 33.

    Team, R. C. A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

  • 34.

    Irschick, D. J. & Garland, T. Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396 (2001).

    Article  Google Scholar 

  • 35.

    Damme, R. V. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).

    Article  Google Scholar 

  • 36.

    Ballinger, R. E., Nietfeldt, J. W. & Krupa, J. J. An experimental analysis of the role of the tail in a high running speed in Cnemidophorus sexlineatus (Reptilia; Squamata: Lacertilia). Herpetology 35, 114–116 (1979).

    Google Scholar 

  • 37.

    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).

    Article  Google Scholar 

  • 38.

    Johnson, T. P., Swoap, S. J., Bennett, A. F. & Josephson, R. K. Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 185–197 (1993).

    Google Scholar 

  • 39.

    Punzo, F. Tail Autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J. Herpetol. 16, 329–331 (1982).

    Article  Google Scholar 

  • 40.

    Borges-Landáez, P. A. & Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J. Herpetol. 37, 592–595 (2003).

    Article  Google Scholar 

  • 41.

    Vanhooydonck, B., Damme, R. V. & Aerts, P. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J. Exp. Biol. 205, 1037–1046 (2002).

    PubMed  Google Scholar 

  • 42.

    Darwin, C. R. On the Origin of Species by Means of Natural Selection (Harvard University Press, Cambridge, 1859).

    Google Scholar 

  • 43.

    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    PubMed  Article  Google Scholar 

  • 44.

    Ricklefs, R. E. & Miles, D. B. Ecological and evolutionary inferences from morphology: an ecological perspective. In Ecological Morphology: Integrative and Organismal Biology (eds Wainwright, P. C. & Reilly, S. M.) 13–41 (University of Chicago Press, Chicago, 1994).

    Google Scholar 

  • 45.

    Dornburg, A., Sidlaukas, B., Santini, F. & Alfaro, N. M. E. The influence of an innovative locomotor strategy on the phenotypic diversifcation of triggerfsh (Family: Balistidae). Evolution 65, 1912–1926 (2011).

    PubMed  Article  Google Scholar 

  • 46.

    Vermeij, G. J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA 103, 1804–1809 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Collins, C. E. & Higham, T. E. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci. Rep. 7, 15595 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Cameron, S. F., Wynn, M. L. & Wilson, R. S. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J. Exp. Biol. 216, 3781–3789 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Stebbins, R. C. Some aspects of the ecology of the iguanid genus Uma. Ecol. Monogr. 14, 311–332 (1944).

    Article  Google Scholar 

  • 50.

    Evans, J. S., Eifler, D. A. & Eifler, M. A. Sand-diving as an escape tactic in the lizard Meroles anchietae. J. Arid Environ. 140, 1–5 (2017).

    ADS  Article  Google Scholar 

  • 51.

    Halloy, M., Etheridge, R. & Burghardt, G. M. To bury in sand: Phylogenetic relationships among lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on behavioral characters. Herpetol. Monogr. 12, 1–37 (1998).

    Article  Google Scholar 

  • 52.

    Bauwens, D., Garland, T., Castilla, A. M. & Van Damme, R. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863 (1995).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Bonine, K. E. & Garland, T. J. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 248, 255–265 (1999).

    Article  Google Scholar 

  • 54.

    Shimada, T., Kadau, D., Shinbrot, T. & Herrmann, H. J. Swimming in granular media. Phys. Rev. E. 80, 020301 (2009).

    ADS  Article  CAS  Google Scholar 

  • 55.

    Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Sci. 325, 314–318 (2009).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Sharpe, S. S., Ding, Y. & Goldman, D. I. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216, 260–274 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Edwards, S., Herrel, A., Vanhooydonck, B., Measey, G. J. & Tolley, K. A. Diving in head first: morphology and performance is linked to predator escape strategy in desert lizards (Meroles, Lacertidae, Squamata). Biol. J. Linn. Soc. 119, 919–931 (2016).

    Article  Google Scholar 

  • 58.

    Bergmann, P. J., Pettinelli, K. J., Crockett, M. E. & Schaper, E. G. It’s just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J. Exp. Biol. 220, 3706–3716 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Arnold, E. N. Why do morphological phylogenies vary in quality—an investigation based on the comparative history of lizard clades. Proc. R. Soc. B. 240, 135–172 (1990).

    ADS  CAS  Google Scholar 

  • 60.

    Stellatelli, O. A., Block, C., Vega, L. E. & Cruz, F. B. Nonnative vegetation induces changes in predation pressure and escape behavior of two sand lizards (Liolaemidae: Liolaemus). Herpetology 71, 136–142 (2015).

    Article  Google Scholar 

  • 61.

    Etheridge, R. & de Queiroz, K. A phylogeny of Iguanidae. In Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp (eds Estes, R. & Pregill, G.) 283–368 (Stanford University Press, Stanford, 1988).

    Google Scholar 

  • 62.

    Pang, J. F. et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 27, 398–409 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Guo, X. & Wang, Y. Partitioned Bayesian analyses, dispersal—vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a reevaluation. Mol. Phylogenet. Evol. 45, 643–662 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

    Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition