in

Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae)

  • 1.

    Schiel, D. R. & Foster, M. S. The biology and ecology of giant kelp forests. (University of California Press, 2015).

  • 2.

    Bartsch, I. et al. The genus Laminaria sensu lato: recent insights and developments. Eur. J. Phycol 43, 1–86 (2008).

  • 3.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737 (2016).

  • 4.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796 (2016).

  • 5.

    Küpper, F. C. & Kamenos, N. A. The future of marine biodiversity and marine ecosystem functioning in UK coastal and territorial waters (including UK Overseas Territories) – with an emphasis on marine macrophyte communities. Bot. Mar 61, 521–535 (2018).

    • Article
    • Google Scholar
  • 6.

    Camus, C. et al. Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile. Biofuels, Bioprod. Biorefining 10, 673–685 (2016).

  • 7.

    Mouritsen, O. G. Seaweeds: Edible, available and sustainable. (The University of Chicago Press, 2013).

  • 8.

    Westermeier, R., Patiño, D. J., Murúa, P. & Müller, D. G. Macrocystis mariculture in Chile: Growth performance of heterosis genotype constructs under field conditions. J. Appl. Phycol. 23 (2011).

  • 9.

    Mora-Soto, A. et al. A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera) Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2 Imagery. Remote Sens 12, 694 (2020).

  • 10.

    Westermeier, R., Murúa, P., Patiño, D. J., Manoli, G. & Müller, D. G. Evaluation of kelp harvest strategies: recovery of Lessonia berteroana (Phaeophyceae, Laminariales) in Pan de Azucar, Atacama, Chile. J. Appl. Phycol. 31, 575–585 (2019).

    • Article
    • Google Scholar
  • 11.

    Murúa, P. et al. Gall disease in the alginophyte Lessonia berteroana: A pathogenic interaction linked with host adulthood in a seasonal-dependant manner. Algal Res. 39, 101435 (2019).

    • Article
    • Google Scholar
  • 12.

    Macaya, E. C. & Zuccarello, G. C. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar. Ecol. Prog. Ser. 420, 103–112 (2010).

  • 13.

    Hoffmann, A. J. & Santelices, B. Marine Flora of Central Chile. (Ediciones Universidad Cátolica de Chile, 1997).

  • 14.

    Westermeier, R., Patiño, D. & Müller, D. G. Sexual compatibility and hybrid formation between the giant kelp species Macrocystis pyrifera and M. integrifolia (Laminariales, Phaeophyceae) in Chile. J. Appl. Phycol. 19, 215–221 (2007).

    • Article
    • Google Scholar
  • 15.

    Demes, K. W., Graham, M. H. & Suskiewicz, T. S. Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: The giant kelp, Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J. Phycol 45, 1266–1269 (2009).

  • 16.

    Macaya, E. C. & Zuccarello, G. C. DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J. Phycol 46, 736–742 (2010).

  • 17.

    González, A. et al. Identification of cryptic cpecies in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J. Phycol 48, 1153–1165 (2012).

  • 18.

    Tellier, F., Tapia, J., Faugeron, S., Destombe, C. & Valero, M. The Lessonia nigrescens species complex (Laminariales, phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J. Phycol 47, 894–903 (2011).

  • 19.

    Rosenfeld, S. et al. A new record of kelp Lessonia spicata (Suhr) Santelices in the Sub-Antarctic Channels: implications for the conservation of the “huiro negro” in the Chilean coast. PeerJ, https://doi.org/10.7717/peerj.7610 (2019).

  • 20.

    Westermeier, R. & Möller, P. Population Dynamics of Macrocystis pyrifera (L.) C. Agardh in the Rocky Intertidal of Southern Chile. Bot. Mar. 33 (1990).

  • 21.

    Westermeier, R. The marine seaweed of Chile’s tenth region (Valdivia, Osorno, Llanquihue and Chiloe). in Proceedings of the 10th International Seaweed Symposium (ed. Levring, T.) 215–220 (Walter de Gruyter and Co., 1980).

  • 22.

    Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered 105, 795–809 (2014).

  • 23.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

  • 24.

    López-Caamal, A. & Tovar-Sánchez, E. Genetic, morphological, and chemical patterns of plant hybridization. Rev. Chil. Hist. Nat. 87, 16 (2014).

    • Article
    • Google Scholar
  • 25.

    Wissemann, V. Plant evolution by means of hybridization. Syst. Biodivers. 5, 243–253 (2007).

    • Article
    • Google Scholar
  • 26.

    Coyer, J. A., Peters, A. F., Hoarau, G., Stam, W. T. & Olsen, J. L. Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc. Biol. Sci. 269, 1829–1834 (2002).

  • 27.

    Peters, A. F. et al. Reinstatement of Ectocarpus crouaniorum Thuret in Le Jolis as a third common species of Ectocarpus (Ectocarpales, Phaeophyceae) in Western Europe, and its phenology at Roscoff, Brittany. Phycol. Res 58, 157–170 (2010).

  • 28.

    Lewis, R. J. Chromosomes of the brown algae (Phycological Reviews). Phycologia 35, 9–18 (1996).

    • Article
    • Google Scholar
  • 29.

    Savoie, A. M. & Saunders, G. W. Evidence for the introduction of the Asian red alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales, Rhodophyta) in the Northwest Atlantic. Mol. Ecol. 24, 5927–5937 (2015).

  • 30.

    Coyer, J. A. et al. Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biol. Lett 2, 405–408 (2006).

  • 31.

    Montecinos, A. E. et al. Hybridization between two cryptic filamentous brown seaweeds along the shore: analysing pre- and postzygotic barriers in populations of individuals with varying ploidy levels. Mol. Ecol. 26, 3497–3512 (2017).

  • 32.

    Liptack, M. & Druehl, L. Molecular evidence for an interfamilial laminarialean cross. Eur. J. Phycol 35, 135–142 (2000).

    • Article
    • Google Scholar
  • 33.

    Lane, C. E., Mayes, C., Druehl, L. D. & Saunders, G. W. A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J. Phycol. 42, 493–512 (2006).

  • 34.

    Jackson, C., Salomaki, E. D., Lane, C. E. & Saunders, G. W. Kelp transcriptomes provide robust support for interfamilial relationships and revision of the little known Arthrothamnaceae (Laminariales). J. Phycol. 53, 1–6 (2017).

  • 35.

    Starko, S. et al. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol. Phylogenet. Evol. 136, 138–150 (2019).

  • 36.

    Tineo, D. et al. Analysis of the complete organellar genomes of the economically valuable kelp Lessonia spicata (Lessoniaceae, Phaeophyceae) from Chile. Mitochondrial DNA Part B 4, 2581–2582 (2019).

    • Article
    • Google Scholar
  • 37.

    Murúa, P., Küpper, F. C., Muñoz, L. A., Bernard, M. & Peters, A. F. Microspongium alariae in Alaria esculenta: A widely-distributed non-parasitic brown algal endophyte that shows cell modifications within its host. Bot. Mar., https://doi.org/10.1515/bot-2017-0095 (2018).

  • 38.

    Westermeier, R., Patiño, D. J., Piel, M. I. & Müller, D. G. Manual de cultivo de Macrocystis pyrifera (huiro) en Chile. (Universidad Austral de Chile, 2005).

  • 39.

    Starr, R. C. & Zeikus, J. A. UTEX-The culture collection of algae at the University of Texas at Austin 1993. List of cultures. J. Phycol. 29, 1–106 (1993).

    • Article
    • Google Scholar
  • 40.

    Westermeier, R., Patino, D., Piel, M. I., Maier, I. & Mueller, D. G. A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquac. Res. 37, 164–171 (2006).

    • Article
    • Google Scholar
  • 41.

    Murúa, P., Westermeier, R., Patiño, D. J. & Müller, D. G. Culture studies on early development of Lessonia trabeculata (Phaeophyceae, Laminariales): Seasonality and acclimation to light and temperature. Phycol. Res. 61, 145–153 (2013).

    • Article
    • Google Scholar
  • 42.

    González, A. V., Beltrán, J., Flores, V. & Santelices, B. Morphological convergence in the inter-holdfast coalescence process among kelp and kelp-like seaweeds (Lessonia, Macrocystis, Durvillaea). Phycologia 54, 283–291 (2015).

    • Article
    • Google Scholar
  • 43.

    González, A. V. & Santelices, B. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile. Plos One 12, e0169182 (2017).

  • 44.

    Gachon, C. M. M. et al. Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal. Appl. Environ. Microbiol. 75, 322–328 (2009).

  • 45.

    Tai, V., Lindstrom, S. C. & Saunders, G. W. Phylogeny of the Dumontiaceae (Gigartinales, Rhodophyta) and associated families based on SSU rDNA and internal transcribed spacer sequence data. J. Phycol. 37, 184–196 (2001).

  • 46.

    Peters, A. F., Scornet, D., Müller, D. G., Kloareg, B. & Cock, J. M. Inheritance of organelles in artificial hybrids of the isogamous multicellular chromist alga Ectocarpus siliculosus (Phaeophyceae). Eur. J. Phycol. 39, 235–242 (2004).

    • Article
    • Google Scholar
  • 47.

    Lane, C. E., Lindstrom, S. C. & Saunders, G. W. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44, 634–648 (2007).

  • 48.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

  • 49.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  • 50.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  • 51.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol 59, 307–321 (2010).

  • 52.

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

  • 53.

    Ronquist, F. et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol 61, 539–542 (2012).

  • 54.

    Macintyre, L. et al. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs, https://doi.org/10.3390/md12063416 (2014).

  • 55.

    Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, https://doi.org/10.1038/nbt.2377 (2012).

  • 56.

    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, https://doi.org/10.1186/1471-2105-11-395 (2010).

  • 57.

    Wickham, H. ggplot2., https://doi.org/10.1007/978-0-387-98141-3 (Springer New York, 2009)..

  • 58.

    Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn – A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics, https://doi.org/10.1186/1471-2164-9-488. (2008)

  • 59.

    Eriksson, L. et al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Analytical and Bioanalytical Chemistry, https://doi.org/10.1007/s00216-004-2783-y. (2004)

  • 60.

    Baldauf, S. L. An overview of the phylogeny and diversity of eukaryotes. J. Syst. Evol. 46, 263–273 (2008).

    • Google Scholar
  • 61.

    Reviers, B. De, Rousseau, F. & Draisma, S. G. A. Classification of the Phaeophycea from past to present and current challenges. In Unravelling the algae. The past, present, and future of algal systematics (eds. Brodie, J. & Lewis, J.) (2007).

  • 62.

    Yang, E. C. et al. Ligulate Desmarestia (Desmarestiales, Phaeophyceae) revisited: D. japonica sp. nov. and D. dudresnayi differ from D. ligulata. J. Phycol. 50, 149–166, https://doi.org/10.1111/jpy.12148 (2014).

  • 63.

    Coyer, J. A., Engle, J. M. & Zimmerman, R. C. Discovery of a Fertile Pelagophycus x Macrocystis (Phaeophyta) Putative Hybrid and Subsequent Production of F2 Sporophytes in the Laboratory. J. Phycol. 28, 127–130 (1992).

    • Article
    • Google Scholar
  • 64.

    Lewis, R. J. & Neushul, M. Intergeneric hybridization among five genera of the family Lessoniaceae (Phaeophyceae) and evidence for polyploidy in a fertile Pelagophycus×Macrocystis hybrid. Journal of Phycology 31, 1012–1017 (1995).

    • Article
    • Google Scholar
  • 65.

    Müller, D. G. Studies on sexual compatibility between Ectocarpus siliculosus (Phaeophyceae) from Chile and the Mediterranean Sea. Helgoländer Meeresuntersuchungen 42, 469–476 (1988).

    • Article
    • Google Scholar
  • 66.

    Neushul, M. Domestication and cultivation of Californian macroalgae. Proc. 10th Int. Seaweed Symp. 10, 71–96 (1981).

    • Article
    • Google Scholar
  • 67.

    Schnetter, R., Hörnig, I. & Weber-Peukert, G. Taxonomy of some North Atlantic Dictyota species (Phaeophyta). Hydrobiologia 151–152, 193–197 (1987).

    • Article
    • Google Scholar
  • 68.

    Westermeier, R., Müller, D. G., Gómez, I., Rivera, P. & Wenzel, H. Population biology of Durvillaea antarctica and Lessonia nigrescens (Phaeophyta) on the rocky shores of Southern Chile. Mar. Ecol. Ser 110, 187–194 (1994).

    • Article
    • Google Scholar
  • 69.

    Westermeier, R., Patiño, D. J., Müller, H. & Müller, D. G. Towards domestication of giant kelp (Macrocystis pyrifera) in Chile: Selection of haploid parent genotypes, outbreeding, and heterosis. J. Appl. Phycol. 22, 357–361 (2010).

    • Article
    • Google Scholar
  • 70.

    Kraan, S. & Guiry, M. D. Sexual hybridization experiments and phylogenetic relationships as inferred from Rubisco spacer sequences in the genus Alaria (Phaeophyceae). J. Phycol. 36, 190–198 (2000).

  • 71.

    Lewis, R. J. & Neushul, M. Northern and Southern Hemisphere Hybrids of Macrocystis. J. Phycol. 30, 346–353 (1994).

    • Article
    • Google Scholar
  • 72.

    Hwang, E. K., Hwang, I. K., Park, E. J., Gong, Y. G. & Park, C. S. Development and cultivation of F2 hybrid between Undariopsis peterseniana and Undaria pinnatifida for abalone feed and commercial mariculture in Korea. J. Appl. Phycol. 26, 747–752 (2014).

    • Article
    • Google Scholar
  • 73.

    Druehl, L. D., Collins, J. D., Lane, C. E. & Saunders, G. W. An evaluation of methods used to assess intergeneric hybridization in kelp using pacific laminariales (Phaeophyceae). J. Phycol 41, 250–262 (2005).

  • 74.

    Müller, D. G., Gassmann, G. & Lüning, K. Isolation of a spermatozoid-releasing and -attracting substance from female gametophytes of Laminaria digitata. Nature 279, 430–431 (1979).

  • 75.

    Müller, D. G., Maier, I. & Gassmann, G. Survey on sexual pheromone specificity in Laminariales (Phaeophyceae). Phycologia 24, 475–477 (1985).

    • Article
    • Google Scholar
  • 76.

    Sanbonsuga, Y. & Neushul, M. Hybridization of Macrocystis (Phaeophyta) with other float-bearing kelps. J. Phycol. 14, 214–224 (1978).

    • Article
    • Google Scholar
  • 77.

    Hoarau, G., Coyer, J. A., Giesbers, M. C. W. G., Jueterbock, A. & Olsen, J. L. Pre-zygotic isolation in the macroalgal genus Fucus from four contact zones spanning 100–10 000 years: a tale of reinforcement? R. Soc. Open Sci 2, 140538 (2015).

  • 78.

    Del Cortona, A. et al. The Plastid Genome in Cladophorales Green Algae Is Encoded by Hairpin Chromosomes. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.004 (2017).

  • 79.

    Krick, A. et al. A marine Mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactones. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02344-06 (2007).

  • 80.

    Tsuda, M. et al. Scalusamides A-C, new pyrrolidine alkaloids from the marine-derived fungus Penicillium citrinum. J. Nat. Prod. https://doi.org/10.1021/np049661q (2005).

  • 81.

    Siddiqui, S., Usmanghani, K. & Shameel, M. Sterol and Fatty Acid compositions of a marine alga Bryopsis pennata (bryopsidophyceae, chlorophyta). Pak. J. Pharm. Sci. (1994).

  • 82.

    Nes, W. D., Norton, R. A., Crumley, F. G., Madigan, S. J. & Katzt, E. R. Sterol phylogenesis and algal evolution. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.87.19.7565 (1990).

  • 83.

    Ohta, K. et al. Action of a new mammalian DNA polymerase inhibitor, sulfoquinovosyldiacylglycerol. Biol. Pharm. Bull. https://doi.org/10.1248/bpb.22.111 (1999).

  • 84.

    Frumento, D. et al. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor. Biotechnol. Prog. https://doi.org/10.1002/btpr.2218 (2016).

  • 85.

    Nichols, B. W., James, A. T. & Breuer, J. Interrelationships between fatty acid biosynthesis and acyl-lipid synthesis in Chlorella vulgaris. Biochem. J. https://doi.org/10.1042/bj1040486 (1967).

  • 86.

    Magura, J., Moodley, R. & Jonnalagadda, S. B. Toxic metals (As and Pb) in Sargassum elegans Suhr (1840) and its bioactive compounds. Int. J. Environ. Health Res., https://doi.org/10.1080/09603123.2018.1537439 (2019).

  • 87.

    Wang, J. F. et al. Vaccinols J–S, ten new salicyloid derivatives from the marine mangrove-derived endophytic fungus Pestalotiopsis vaccinii. Fitoterapia https://doi.org/10.1016/j.fitote.2017.06.013 (2017).

  • 88.

    Lei et al. Cytotoxic Polyketides from the Marine Sponge-Derived Fungus Pestalotiopsis heterocornis XWS03F09. Molecules https://doi.org/10.3390/molecules24142655 (2019).

  • 89.

    Foseid, L., Devle, H., Stenstrøm, Y., Naess-Andresen, C. F. & Ekeberg, D. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids. J. Lipids https://doi.org/10.1155/2017/1029702 (2017).

  • 90.

    Polevoi, V. V., Tarakhovskaia, E. R., Maslov, I. I. & Polevoi, A. V. Role of auxin in induction of polarity in zygotes of Fucus vesiculosus L. Ontogenez https://doi.org/10.1023/b:rudo.0000007890.08452.c4 (2003).

  • 91.

    Sun, H., Basu, S., Brady, S. R., Luciano, R. L. & Muday, G. K. Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. Plant Physiol. https://doi.org/10.1104/pp.103.034900 (2004).

  • 92.

    Valero, M. et al. Perspectives on domestication research for sustainable seaweed aquaculture. Perspect. Phycol 4, 33–46 (2017).

    • Article
    • Google Scholar
  • 93.

    Martins, N. et al. Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps Laminaria digitata and L. pallida (Laminariales, Phaeophyceae) with contrasting thermal affinities. Eur. J. Phycol. 1–14 https://doi.org/10.1080/09670262.2019.1613571 (2019).

  • 94.

    Rieseberg, L. H. & Carney, S. E. Plant hybridization. New Phytol. 140, 599–624 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale