in

Mountains, erosion and the carbon cycle

  • 1.

    Ahnert, F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).

    Google Scholar 

  • 2.

    Dewey, J. F. & Horsfield, B. Plate tectonics, orogeny and continental growth. Nature 225, 521–525 (1970).

    Google Scholar 

  • 3.

    Hager, B. H. & Richards, M. A. Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Philos. Trans. R. Soc. A 328, 309–327 (1989).

    Google Scholar 

  • 4.

    Willett, S. D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Google Scholar 

  • 5.

    Braun, J. The many surface expressions of mantle dynamics. Nat. Geosci. 3, 825–833 (2010).

    Google Scholar 

  • 6.

    Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Google Scholar 

  • 7.

    Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (1999).

    Google Scholar 

  • 8.

    Chamberlin, T. C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J. Geol. 7, 545–584 (1899). First paper (as far as known) to propose mountain building as a driver of atmospheric CO 2drawdown and global cooling, suggesting this mechanism as the most plausible explanation for episodes of glaciation in the geologic past.

    Google Scholar 

  • 9.

    Richter, F. M., Rowley, D. B. & DePaolo, D. J. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11–23 (1992).

    Google Scholar 

  • 10.

    Molnar, P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos. Trans. R. Soc. London Ser. A 326, 33–88 (1988).

    Google Scholar 

  • 11.

    Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Google Scholar 

  • 12.

    Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988). Pioneering study connecting evolution of Tibetan Plateau uplift, changes in marine chemistry and global cooling over the past 60 Myr; stimulated a renaissance in efforts to understanding links between mountain building and climate.

    Google Scholar 

  • 13.

    Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Google Scholar 

  • 14.

    Volk, T. Cooling in the late Cenozoic. Nature 361, 123 (1993).

    Google Scholar 

  • 15.

    Caldeira, K., Arthur, M. A., Berner, R. A. & Lasaga, A. C. Cooling in the late Cenozoic. Nature 361, 123–124 (1993).

    Google Scholar 

  • 16.

    Raymo, M. E. & Ruddiman, W. Cooling in the late Cenozoic. Nature 361, 124 (1993).

    Google Scholar 

  • 17.

    Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Google Scholar 

  • 18.

    Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999). Assembled and analyzed a river-chemistry database to provide landmark estimates of silicate-weathering fluxes and their global controls, revealing a broad relationship between atmospheric CO 2drawdown by weathering and erosion rates.

    Google Scholar 

  • 19.

    Galy, A. & France-Lanord, C. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 159, 31–60 (1999).

    Google Scholar 

  • 20.

    White, A. F. & Brantley, S. L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geol. 202, 479–506 (2003).

    Google Scholar 

  • 21.

    Ebelmen, J. Sur les produits de la décomposition des especes minérales de la famille des silicates. Ann. Mines 7, 3–66 (1845).

    Google Scholar 

  • 22.

    Urey, H. C. On the early chemical history of the Earth and the origin of life. Proc. Natl Acad. Sci. USA 38, 351–363 (1952).

    Google Scholar 

  • 23.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Google Scholar 

  • 24.

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Google Scholar 

  • 25.

    Anderson, S. P. Breaking it down: mechanical processes in the weathering engine. Elements 15, 247–252 (2019).

    Google Scholar 

  • 26.

    Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E. & Nagy, K. L. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58, 2361–2386 (1994).

    Google Scholar 

  • 27.

    Maher, K. The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

    Google Scholar 

  • 28.

    Maher, K. The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth Planet. Sci. Lett. 312, 48–58 (2011). Developed a mechanistic framework for understanding why hydrology is a primary control on weathering fluxes, revealing the key role of saturation state in influencing reaction rates in natural weathering systems.

    Google Scholar 

  • 29.

    Brantley, S. L. & Lebedeva, M. Learning to read the chemistry of regolith to understand the critical zone. Annu. Rev. Earth Planet. Sci. 39, 387–416 (2011).

    Google Scholar 

  • 30.

    Clair, J. S. et al. Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350, 534–538 (2015).

    Google Scholar 

  • 31.

    Gu, X. et al. Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochim. Cosmochim. Acta 269, 63–100 (2020). Revealed how rock structure varies across erosion rates in ways that may mechanistically explain how erosion and weathering are linked.

    Google Scholar 

  • 32.

    West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005). Revealed the supply vs kinetic limitation of silicate weathering across river catchments, as a function of erosion rates. By linking the empirical data to a predictive model, the role of erosion rate, temperature and run-off could be deconvolved for the first time.

    Google Scholar 

  • 33.

    Gabet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Google Scholar 

  • 34.

    Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).

    Google Scholar 

  • 35.

    Gaillardet, J. & Galy, A. Himalaya-carbon sink or source? Science 320, 1727–1728 (2008).

    Google Scholar 

  • 36.

    Derry, L. A. & France-Lanord, C. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett. 142, 59–74 (1996).

    Google Scholar 

  • 37.

    France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997). Discovered very high fluxes of organic-carbon burial in the Bengal Fan as a result of Himalayan erosion, far outpacing silicate weathering in this system and giving birth to new lines of research to understand erosional controls on the organic-carbon cycle.

    Google Scholar 

  • 38.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Google Scholar 

  • 39.

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Google Scholar 

  • 40.

    Petsch, S. T. (2014). in Treatise on Geochemistry 2nd edn Vol. 12 (eds Holland, H. D. & Turekian, K. K.) 217–238 (Elsevier).

  • 41.

    Hilton, R. G., Gaillardet, J. Ô., Calmels, D. & Birck, J. L. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth Planet. Sci. Lett. 403, 27–36 (2014). Developed a new proxy that enables measurement of petrogenic carbon-oxidation fluxes at the scale of river catchments and found a link between oxidation fluxes and physical erosion rate.

    Google Scholar 

  • 42.

    Calmels, D., Gaillardet, J., Brenot, A. & France-Lanord, C. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35, 1003–1006 (2007). Revealed the correlation between erosion rate and fluxes from sulfide oxidation, opening up this field of inquiry.

    Google Scholar 

  • 43.

    Torres, M. A., West, A. J. & Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 507, 346–349 (2014). Proposed that sulfide oxidation can have important effects on the carbon cycle over long periods of time (up to tens of Myrs), demonstrated links with erosion and explored importance over the past 60 Myrs.

    Google Scholar 

  • 44.

    Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    Google Scholar 

  • 45.

    Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 1–22 (2019).

    Google Scholar 

  • 46.

    Kerrick, D. M. & Caldeira, K. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232 (1998).

    Google Scholar 

  • 47.

    Becker, J. A., Bickle, M. J., Galy, A. & Holland, T. J. B. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs. Earth Planet. Sci. Lett. 265, 616–629 (2008).

    Google Scholar 

  • 48.

    Ciais, P. et al in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F., et al) 465–570 (Cambridge Univ. Press, 2013).

  • 49.

    Sundquist, E. T. & Visser, K. The geologic history of the carbon cycle. Treatise Geochem. 8, 425–472 (2004).

    Google Scholar 

  • 50.

    Holland, H. D., Lazar, B. & McCaffrey, M. Evolution of the atmosphere and oceans. Nature 320, 27–33 (1986).

    Google Scholar 

  • 51.

    Moon, S., Chamberlain, C. P. & Hilley, G. E. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim. Cosmochim. Acta 134, 257–274 (2014).

    Google Scholar 

  • 52.

    Kump, L. R., & Arthur, M. A. (1997). in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Springer, 2013).

  • 53.

    Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).

    Google Scholar 

  • 54.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Google Scholar 

  • 55.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Google Scholar 

  • 56.

    Edmond, J. M. & Huh, Y. Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet. Sci. Lett. 216, 125–139 (2003).

    Google Scholar 

  • 57.

    Kump, L. R. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? Philos. Trans. R. Soc. A 376, 20170078 (2018).

    Google Scholar 

  • 58.

    Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on earth. Glob. Biogeochem. Cycles 34, e2018GB006061 (2020).

    Google Scholar 

  • 59.

    Kao, S. J. et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: Mountain building and atmospheric carbon dioxide sequestration. Earth Surf. Dyn. 2, 127–139 (2014).

    Google Scholar 

  • 60.

    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Google Scholar 

  • 61.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B Biol. Sci. 361, 931–950 (2006).

    Google Scholar 

  • 62.

    Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F. & West, A. J. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proc. Natl Acad. Sci. USA 114, 8716–8721 (2017).

    Google Scholar 

  • 63.

    Stolper, D. A., Bender, M. L., Dreyfus, G. B., Yan, Y. & Higgins, J. A. A Pleistocene ice core record of atmospheric O2 concentrations. Science 353, 1427–1430 (2016).

    Google Scholar 

  • 64.

    Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Google Scholar 

  • 65.

    Mayorga, E. et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436, 538–541 (2005).

    Google Scholar 

  • 66.

    Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

    Google Scholar 

  • 67.

    Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Google Scholar 

  • 68.

    Larsen, I. J., Montgomery, D. R. & Greenberg, H. M. The contribution of mountains to global denudation. Geology 42, 527–530 (2014).

    Google Scholar 

  • 69.

    Jacobson, A. D. & Blum, J. D. Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology 31, 865–868 (2003). Brought to light the importance of distinguishing carbonate vs silicate weathering in evaluating CO 2drawdown, demonstrating that high erosion rates tend to produce increased proportion of solutes from carbonate sources.

    Google Scholar 

  • 70.

    Stallard, R. F. & Edmond, J. M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Oceans 88, 9671–9678 (1983).

    Google Scholar 

  • 71.

    Riebe, C. S., Kirchner, J. W. & Finkel, R. C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224, 547–562 (2004).

    Google Scholar 

  • 72.

    Dixon, J. L. & von Blanckenburg, F. Soils as pacemakers and limiters of global silicate weathering. Comptes Rendus Geosci. 344, 597–609 (2012).

    Google Scholar 

  • 73.

    Hilley, G. E., Chamberlain, C. P., Moon, S., Porder, S. & Willett, S. D. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet. Sci. Lett. 293, 191–199 (2010).

    Google Scholar 

  • 74.

    West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Google Scholar 

  • 75.

    Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    Google Scholar 

  • 76.

    Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    Google Scholar 

  • 77.

    Ludwig, W., Probst, J. L. & Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10, 23–41 (1996).

    Google Scholar 

  • 78.

    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Google Scholar 

  • 79.

    Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. The significance of the erosion-induced terrestrial carbon sink. BioScience 57, 337–346 (2007).

    Google Scholar 

  • 80.

    Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Google Scholar 

  • 81.

    Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Google Scholar 

  • 82.

    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Google Scholar 

  • 83.

    Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Google Scholar 

  • 84.

    Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).

    Google Scholar 

  • 85.

    Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Google Scholar 

  • 86.

    Hilton, R. G. et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1, 759–762 (2008).

    Google Scholar 

  • 87.

    Clark, K. E. et al. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. J. Geophys. Res. Biogeosci. 122, 449–469 (2017).

    Google Scholar 

  • 88.

    Kao, S. J. & Liu, K. K. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnol. Oceanogr 41, 1749–1757 (1996).

    Google Scholar 

  • 89.

    Blair, N. E. et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta 67, 63–73 (2003).

    Google Scholar 

  • 90.

    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015). Assembled database of organic-carbon fluxes to show and quantify key relationships between erosion and organic-carbon export from the continents.

    Google Scholar 

  • 91.

    Lyons, W. B., Nezat, C. A., Carey, A. E. & Hicks, D. M. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443–446 (2002).

    Google Scholar 

  • 92.

    Hilton, R. G. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277, 118–132 (2017).

    Google Scholar 

  • 93.

    Hilton, R. G. et al. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Glob. Biogeochem. Cycles 26, GB3014 (2012).

    Google Scholar 

  • 94.

    Hovius, N., Stark, C. P., Hao-Tsu, C. & Jiun-Chuan, L. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 108, 73–89 (2000).

    Google Scholar 

  • 95.

    Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 5, 468–473 (2012).

    Google Scholar 

  • 96.

    Mayer, L. M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 114, 347–363 (1994).

    Google Scholar 

  • 97.

    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Google Scholar 

  • 98.

    Aller, R. C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Mar. Geol. 61, 143–155 (1998).

    Google Scholar 

  • 99.

    Goldsmith, S. T. et al. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology 36, 483–486 (2008).

    Google Scholar 

  • 100.

    Clark, K. E. et al. Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surf. Dyn. 4, 47–70 (2016).

    Google Scholar 

  • 101.

    Hatten, J. A., Goñi, M. A. & Wheatcroft, R. A. Chemical characteristics of particulate organic matter from a small, mountainous river system in the Oregon Coast Range, USA. Biogeochemistry 107, 43–66 (2012).

    Google Scholar 

  • 102.

    Goñi, M. A., Hatten, J. A., Wheatcroft, R. A. & Borgeld, J. C. Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest, USA. J. Geophys. Res. Biogeosci 118, 112–134 (2013).

    Google Scholar 

  • 103.

    Wang, J. et al. The isotopic composition and fluxes of particulate organic carbon exported from the eastern margin of the Tibetan Plateau. Geochim. Cosmochim. Acta 252, 1–15 (2019).

    Google Scholar 

  • 104.

    Smith, J. C. et al. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands. Earth Planet. Sci. Lett. 365, 198–208 (2013).

    Google Scholar 

  • 105.

    West, A. J. et al. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol. Oceanogr. 56, 77–85 (2011).

    Google Scholar 

  • 106.

    Wohl, E. & Ogden, F. L. Organic carbon export in the form of wood during an extreme tropical storm, Upper Rio Chagres, Panama. Earth Surf. Process. Landf. 38, 1407–1416 (2013).

    Google Scholar 

  • 107.

    Porder, S., Hilley, G. E. & Chadwick, O. A. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet. Sci. Lett. 258, 414–427 (2007).

    Google Scholar 

  • 108.

    Porder, S. et al. Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249, 100–110 (2015).

    Google Scholar 

  • 109.

    Morford, S. L., Houlton, B. Z. & Dahlgren, R. A. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Glob. Biogeochem. Cycles 30, 333–349 (2016).

    Google Scholar 

  • 110.

    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the δ15N of mountain forests. Biogeosciences 10, 1693–1705 (2013).

    Google Scholar 

  • 111.

    Weintraub, S. R. et al. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96, 1561–1574 (2015).

    Google Scholar 

  • 112.

    Milodowski, D. T., Mudd, S. M. & Mitchard, E. T. A. Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains. Ecology 96, 31–38 (2015).

    Google Scholar 

  • 113.

    Shields, G. A. & Mills, B. J. W. Tectonic controls on the long-term carbon isotope mass balance. Proc. Natl Acad. Sci. USA 114, 4318–4323 (2017).

    Google Scholar 

  • 114.

    Copard, Y., Amiotte-Suchet, P. & Di-Giovanni, C. Storage and release of fossil organic carbon related to weathering of sedimentary rocks. Earth Planet. Sci. Lett. 258, 345–357 (2007).

    Google Scholar 

  • 115.

    Husson, J. M. & Peters, S. E. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460, 68–75 (2017).

    Google Scholar 

  • 116.

    Keller, C. K. & Bacon, D. H. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Glob. Biogeochem. Cycles 12, 361–372 (1998).

    Google Scholar 

  • 117.

    Petsch, S. T., Berner, R. A. & Eglinton, T. I. A field study of the chemical weathering of ancient sedimentary organic matter. Org. Geochem. 31, 475–487 (2000).

    Google Scholar 

  • 118.

    Soulet, G. et al. Technical note: in situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks. Biogeosciences 15, 4087–4102 (2018).

    Google Scholar 

  • 119.

    Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).

    Google Scholar 

  • 120.

    Bouchez, J. et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38, 255–258 (2010).

    Google Scholar 

  • 121.

    Chang, S. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).

    Google Scholar 

  • 122.

    White, A. F., & Buss, H. L. (2013). in Treatise on Geochemistry 2nd edn Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 115–155 (Elsevier).

  • 123.

    Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling. Am. J. Sci. 306, 575–615 (2006).

    Google Scholar 

  • 124.

    Dalai, T. K., Singh, S. K., Trivedi, J. R. & Krishnaswami, S. Dissolved rhenium in the Yamuna River system and the Ganga in the Himalaya: role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere. Geochim. Cosmochim. Acta 66, 29–43 (2002).

    Google Scholar 

  • 125.

    Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39, 71–74 (2011).

    Google Scholar 

  • 126.

    Graz, Y. et al. Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands areas. Earth Surf. Process. Landf. 37, 1263–1271 (2012).

    Google Scholar 

  • 127.

    Horan, K. et al. Mountain glaciation drives rapid oxidation of rock-bound organic carbon. Sci. Adv. 3, e1701107 (2017).

    Google Scholar 

  • 128.

    Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).

    Google Scholar 

  • 129.

    Beyssac, O. et al. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26, TC6001 (2007).

    Google Scholar 

  • 130.

    Sparkes, R. B., Hovius, N., Galy, A. & Liu, J. T. Survival of graphitized petrogenic organic carbon through multiple erosional cycles. Earth Planet. Sci. Lett. 531, 115992 (2020).

    Google Scholar 

  • 131.

    Petsch, S. T., Edwards, K. J. & Eglinton, T. I. Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol 219, 157–170 (2005).

    Google Scholar 

  • 132.

    Torres, M. A. et al. The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth Planet. Sci. Lett. 450, 381–391 (2016).

    Google Scholar 

  • 133.

    Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).

    Google Scholar 

  • 134.

    Das, A., Chung, C. H. & You, C. F. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophys. Res. Lett. 39, L12404 (2012).

    Google Scholar 

  • 135.

    Turchyn, A. V., Tipper, E. T., Galy, A., Lo, J. K. & Bickle, M. J. Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas. Earth Planet. Sci. Lett. 374, 36–46 (2013).

    Google Scholar 

  • 136.

    Williamson, M. A. & Rimstidt, J. D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58, 5443–5454 (1994).

    Google Scholar 

  • 137.

    Berner, R. A., Scott, M. R. & Thomlinson, C. Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr. 15, 544–549 (1970).

    Google Scholar 

  • 138.

    Winnick, M. J. et al. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado. Water Resour. Res. 53, 2507–2523 (2017).

    Google Scholar 

  • 139.

    Hilton, R. G., Galy, A. & Hovius, N. Riverine particulate organic carbon from an active mountain belt: importance of landslides. Glob. Biogeochem. Cycles 22, GB1017 (2008).

    Google Scholar 

  • 140.

    Millot, R., Gaillardet, J., Dupré, B. & Allégre, C. J. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim. Cosmochim. Acta 67, 1305–1329 (2003).

    Google Scholar 

  • 141.

    Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 84–87 (2015).

    Google Scholar 

  • 142.

    Horan, K. et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin. Am. J. Sci. 319, 473–499 (2019). First study to put together a comprehensive catchment-scale budget for key long-term carbon-cycle fluxes, akin to those in Fig. 4.

    Google Scholar 

  • 143.

    Calmels, D. et al. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48–58 (2011).

    Google Scholar 

  • 144.

    Lloret, E. et al. Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem. Geol. 280, 65–78 (2011).

    Google Scholar 

  • 145.

    Lloret, E. et al. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chem. Geol. 351, 229–244 (2013).

    Google Scholar 

  • 146.

    Ferguson, R. I. Accuracy and precision of methods for estimating river loads. Earth Surf. Process. Landf. 12, 95–104 (1987).

    Google Scholar 

  • 147.

    Gaillardet, J., Dupré, B. & Allègre, C. J. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim. Cosmochim. Acta 63, 4037–4051 (1999).

    Google Scholar 

  • 148.

    Mills, B., Daines, S. J. & Lenton, T. M. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst 15, 4866–4884 (2014).

    Google Scholar 

  • 149.

    Jenny, H. Factors of soil formation. Soil. Sci. 52, 415 (1941).

    Google Scholar 

  • 150.

    Brimhall, G. H. & Dietrich, W. E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim. Cosmochim. Acta 51, 567–587 (1987).

    Google Scholar 

  • 151.

    Brantley, S. L., Buss, H., Lebedeva, M., Fletcher, R. C. & Ma, L. Investigating the complex interface where bedrock transforms to regolith. Appl. Geochem. 26, S12–S15 (2011).

    Google Scholar 

  • 152.

    Fletcher, R. C., Buss, H. L. & Brantley, S. L. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth Planet. Sci. Lett. 244, 444–457 (2006).

    Google Scholar 

  • 153.

    Goodfellow, B. W. et al. The chemical, mechanical, and hydrological evolution of weathering granitoid. J. Geophys. Res. Earth Surf. 121, 1410–1435 (2016).

    Google Scholar 

  • 154.

    Brantley, S. L. et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology 277, 100–117 (2017).

    Google Scholar 

  • 155.

    Buss, H. L., Sak, P. B., Webb, S. M. & Brantley, S. L. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. Geochim. Cosmochim. Acta 72, 4488–4507 (2008).

    Google Scholar 

  • 156.

    Molnar, P., Anderson, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 112, F03014 (2007).

    Google Scholar 

  • 157.

    Moon, S., Perron, J. T., Martel, S. J., Holbrook, W. S. & St. Clair, J. A model of three-dimensional topographic stresses with implications for bedrock fractures, surface processes, and landscape evolution. J. Geophys. Res. Earth Surf. 122, 823–846 (2017).

    Google Scholar 

  • 158.

    Lebedeva, M. I., Fletcher, R. C. & Brantley, S. L. A mathematical model for steady-state regolith production at constant erosion rate. Earth Surf. Process. Landf. 35, 508–524 (2010).

    Google Scholar 

  • 159.

    Li, D. D., Jacobson, A. D. & McInerney, D. J. A reactive-transport model for examining tectonic and climatic controls on chemical weathering and atmospheric CO2 consumption in granitic regolith. Chem. Geol. 365, 30–42 (2014).

    Google Scholar 

  • 160.

    Hilton, R. G., Meunier, P., Hovius, N., Bellingham, P. J. & Galy, A. Landslide impact on organic carbon cycling in a temperate montane forest. Earth Surf. Process. Landf. 36, 1670–1679 (2011).

    Google Scholar 

  • 161.

    Ramos Scharrón, C. E., Castellanos, E. J. & Restrepo, C. The transfer of modern organic carbon by landslide activity in tropical montane ecosystems. J. Geophys. Res. Biogeosci 117, G03016 (2012).

    Google Scholar 

  • 162.

    Emberson, R., Hovius, N., Galy, A. & Marc, O. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nat. Geosci. 9, 42–45 (2016). Revealed the importance of landslides as ‘weathering reactors’, generating high-solute fluxes that can play a key role in total weathering from mountainous terrain.

    Google Scholar 

  • 163.

    Emberson, R., Hovius, N., Galy, A. & Marc, O. Oxidation of sulfides and rapid weathering in recent landslides. Earth Surf. Dyn. 4, 727–742 (2016).

    Google Scholar 

  • 164.

    Carretier, S., Goddéris, Y., Martinez, J., Reich, M. & Martinod, P. Colluvial deposits as a possible weathering reservoir in uplifting mountains. Earth Surf. Dyn. 6, 217 (2018).

    Google Scholar 

  • 165.

    Croissant, T. et al. Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model. Geomorphology 339, 87–103 (2019).

    Google Scholar 

  • 166.

    Keefer, D. K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10, 265–284 (1994).

    Google Scholar 

  • 167.

    Wang, J. et al. Earthquake-triggered increase in biospheric carbon export from a mountain belt. Geology 44, 471–474 (2016).

    Google Scholar 

  • 168.

    Frith, N. V. et al. Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nat. Geosci. 11, 772–776 (2018).

    Google Scholar 

  • 169.

    Jin, Z. et al. Seismically enhanced solute fluxes in the Yangtze River headwaters following the AD 2008 Wenchuan earthquake. Geology 44, 47–50 (2016).

    Google Scholar 

  • 170.

    Kao, S. J., Dai, M. H., Wei, K. Y., Blair, N. E. & Lyons, W. B. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation. Paleoceanography 23, PA2207 (2008).

    Google Scholar 

  • 171.

    Blair, N. E., Leithold, E. L. & Aller, R. C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems. Mar. Chem., 92, 141–156 (2004).

    Google Scholar 

  • 172.

    Leithold, E. L., Blair, N. E. & Wegmann, K. W. Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth Sci. Rev. 153, 30–42 (2016).

    Google Scholar 

  • 173.

    Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Google Scholar 

  • 174.

    Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Google Scholar 

  • 175.

    Galy, V., Eglinton, T., France-Lanord, C. & Sylva, S. The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth Planet. Sci. Lett. 304, 1–12 (2011).

    Google Scholar 

  • 176.

    Feakins, S. J., Wu, M. S., Ponton, C., Galy, V. & West, A. J. Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect. Geochim. Cosmochim. Acta 242, 64–81 (2018).

    Google Scholar 

  • 177.

    Ponton, C., West, A. J., Feakins, S. J. & Galy, V. Leaf wax biomarkers in transit record river catchment composition. Geophys. Res. Lett. 41, 6420–6427 (2014).

    Google Scholar 

  • 178.

    Hemingway, J. D. et al. Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chem. Geol. 466, 454–465 (2017).

    Google Scholar 

  • 179.

    Scheingross, J. S. et al. Preservation of organic carbon during active fluvial transport and particle abrasion. Geology 47, 958–962 (2019).

    Google Scholar 

  • 180.

    Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Bull. Geol. Soc. Am. 126, 813–830 (2014).

    Google Scholar 

  • 181.

    Dellinger, M. et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 164, 71–93 (2015).

    Google Scholar 

  • 182.

    Lupker, M. et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta 84, 410–432 (2012).

    Google Scholar 

  • 183.

    Bickle, M. J. et al. Chemical weathering outputs from the flood plain of the Ganga. Geochim. Cosmochim. Acta 225, 146–175 (2018).

    Google Scholar 

  • 184.

    Bouchez, J. et al. Floodplains of large rivers: Weathering reactors or simple silos? Chem. Geol. 332, 166–184 (2012).

    Google Scholar 

  • 185.

    Moquet, J. S. et al. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ. Sci. Pollut. Res. 23, 11405–11429 (2016).

    Google Scholar 

  • 186.

    Lupker, M. et al. A Rouse-based method to integrate the chemical composition of river sediments: application to the Ganga basin. J. Geophys. Res. Earth Surf. 116, F04012 (2011).

    Google Scholar 

  • 187.

    Lupker, M., France-Lanord, C., Galy, V., Lavé, J. Ô. & Kudrass, H. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett. 365, 243–252 (2013).

    Google Scholar 

  • 188.

    Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Google Scholar 

  • 189.

    Wan, S. et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma. Geophys. Res. Lett. 39, L15611 (2012).

    Google Scholar 

  • 190.

    Frings, P. J. Palaeoweathering: how do weathering rates vary with climate? Elements 15, 259–265 (2019).

    Google Scholar 

  • 191.

    Schachtman, N. S., Roering, J. J., Marshall, J. A., Gavin, D. G. & Granger, D. E. The interplay between physical and chemical erosion over glacial-interglacial cycles. Geology 47, 613–616 (2019).

    Google Scholar 

  • 192.

    Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    Google Scholar 

  • 193.

    Li, G. & Elderfield, H. Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta 103, 11–25 (2013).

    Google Scholar 

  • 194.

    Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    Google Scholar 

  • 195.

    Willenbring, J. K. & Von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).

    Google Scholar 

  • 196.

    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Google Scholar 

  • 197.

    Shackleton, N. J. The carbon isotope record of the Cenozoic: History of organic carbon burial and of oxygen in the ocean and atmosphere. Geol. Soc. Spec. Publ. 26, 423–434 (1987).

    Google Scholar 

  • 198.

    Derry, L. A. (2013). in Treatise on Geochemistry 2nd edn Vol. 12 (eds Holland, H. D. & Turekian, K. K.) 239–249 (Elsevier).

  • 199.

    Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    Google Scholar 

  • 200.

    Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allègre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Google Scholar 

  • 201.

    Rad, S., Rive, K., Vittecoq, B., Cerdan, O. & Allegre, C. J. Chemical weathering and erosion rates in the Lesser Antilles: an overview in Guadeloupe, Martinique and Dominica. J. South. Am. Earth Sci. 45, 331–344 (2013).

    Google Scholar 

  • 202.

    Borker, J., Hartmann, J., Romero-Mujalli, G. & Li, G. J. Aging of basalt volcanic systems and decreasing CO2 consumption by weathering. Earth Surf. Dyn. 7, 191–197 (2019).

    Google Scholar 

  • 203.

    Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc-continent collision in tropics set Earth’s climate state. Science 364, 181–184 (2019).

    Google Scholar 

  • 204.

    Wilson, J. T. Static or mobile earth: the current scientific revolution. Proc. Am. Philos. Soc. 112, 309–320 (1968).

    Google Scholar 

  • 205.

    Blattmann, T. M. et al. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Sci. Rep. 9, 2945 (2019).

    Google Scholar 

  • 206.

    White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    Google Scholar 

  • 207.

    Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Google Scholar 

  • 208.

    Kao, S. J. & Milliman, J. D. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J. Geol 116, 431–448 (2008).

    Google Scholar 

  • 209.

    Gomez, B., Carter, L. & Trustrum, N. A. A 2400 yr record of natural events and anthropogenic impacts in intercorrelated terrestrial and marine sediment cores: Waipaoa sedimentary system, New Zealand. Bull. Geol. Soc. Am. 119, 1415–1432 (2007).

    Google Scholar 

  • 210.

    Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).

    Google Scholar 

  • 211.

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Google Scholar 

  • 212.

    Zolkos, S., Tank, S. E. & Kokelj, S. V. Mineral weathering and the permafrost carbon-climate feedback. Geophys. Res. Lett. 45, 9623–9632 (2018). Documented large increases in sulfide oxidation and associated CO 2release associated with thawing permafrost slumps in the Canadian Arctic, pointing to potential weathering-driven positive feedbacks associated with warming.

    Google Scholar 

  • 213.

    Lyons, S. L. et al. Palaeocene–Eocene thermal maximum prolonged by fossil carbon oxidation. Nat. Geosci. 12, 54–60 (2019).

    Google Scholar 

  • 214.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  • 215.

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Google Scholar 

  • 216.

    Norton, K. P. & von Blanckenburg, F. Silicate weathering of soil-mantled slopes in an active Alpine landscape. Geochim. Cosmochim. Acta 74, 5243–5258 (2010).

    Google Scholar 

  • 217.

    Dixon, J. L., Hartshorn, A. S., Heimsath, A. M., DiBiase, R. A. & Whipple, K. X. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth Planet. Sci. Lett. 323, 40–49 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations