in

Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability

  • 1.

    Convey, P. & Block, W. Antarctic diptera: Ecology, physiology and distribution. Eur. J. Entomol. 93, 1–14 (1996).

    Google Scholar 

  • 2.

    Sugg, P., Edwards, J. S. & Baust, J. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecol. Entomol. 8, 105–113 (1983).

    Article  Google Scholar 

  • 3.

    Usher, M. B. & Edwards, M. A dipteran from south of the Antarctic circle: Belgica antarctica (Chironomidae) with a description of its larva. Biol. J. Lin. Soc. 23, 19–31 (1984).

    Article  Google Scholar 

  • 4.

    Strong, J. Ecology of terrestrial arthropods at Palmer Station, Antarctic Peninsula. In Entomology of Antarctica (ed. Linsley-Gressitt, J.) 357–371 (American Geophysical Union, Washington DC, 1967).

    Google Scholar 

  • 5.

    Edwards, J. S. & Baust, J. Sex ratio and adult behaviour of the Antarctic midge Belgica antarctica (Diptera, Chironomklae). Ecol. Entomol. 6, 239–243 (1981).

    Article  Google Scholar 

  • 6.

    Teets, N. M. et al. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: Cellular cold-sensing and a role for calcium. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 294, R1938–R1946 (2008).

    CAS  Article  Google Scholar 

  • 7.

    Benoit, J. B. et al. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J. Insect Physiol. 53, 656–667 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Compar. Biochem. Physiol. A-Mol. Integr. Physiol. 152, 518–523 (2009).

    Article  CAS  Google Scholar 

  • 9.

    Lopez-Martinez, G. et al. Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J. Compar. Physiol. B-Biochem. Syst. Environ. Physiol. 179, 481–491 (2009).

    CAS  Article  Google Scholar 

  • 10.

    Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. Jr. & Denlinger, D. L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 38, 796–804 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Harada, E., Lee, R. E., Denlinger, D. L. & Goto, S. G. Life history traits of adults and embryos of the Antarctic midge Belgica antarctica. Polar Biol. 37, 1213–1217 (2014).

    Article  Google Scholar 

  • 12.

    Convey, P. How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J. Therm. Biol 22, 429–440 (1997).

    Article  Google Scholar 

  • 13.

    Kennedy, A. D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct. Alp. Res. 25, 308–315 (1993).

    Article  Google Scholar 

  • 14.

    Hahn, S. & Reinhardt, K. Habitat preference and reproductive traits in the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Antarct. Sci. 18, 175–181 (2006).

    ADS  Article  Google Scholar 

  • 15.

    Wensler, R. J. & Rempel, J. The morphology of the male and female reproductive systems of the midge, Chironomus plumosus L.. Can. J. Zool. 40, 199–229 (1962).

    Article  Google Scholar 

  • 16.

    Sibley, P. K., Ankley, G. T. & Benoit, D. A. Factors affecting reproduction and the importance of adult size on reproductive output of the midge Chironomus tentans. Environ. Toxicol. Chem. 20, 1296–1303 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Vogt, C. et al. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera)—Baseline experiments for future multi-generation studies. J. Environ. Sci. Health A 42, 1–9 (2007).

    CAS  Article  Google Scholar 

  • 18.

    Clark, A. G. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 19.

    Ravi-Ram, K. & Wolfner, M. F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Compar. Biol. 47, 427–445 (2007).

    CAS  Article  Google Scholar 

  • 20.

    McGraw, L. A., Clark, A. G. & Wolfner, M. F. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 179, 1395–1408 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Benoit, J. B., Attardo, G. M., Baumann, A. A., Michalkova, V. & Aksoy, S. Adenotrophic viviparity in tsetse flies: Potential for population control and as an insect model for lactation. Annu. Rev. Entomol. 60, 351–371 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. USA 105, 2498–2503 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Polak, M. et al. Nutritional geometry of paternal effects on embryo mortality. Proc. R. Soc. B 284, 20171492 (2017).

    Article  CAS  PubMed  Google Scholar 

  • 25.

    Papa, F. et al. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res. 27, 1536–1548 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Izquierdo, A. et al. Evolution of gene expression levels in the male reproductive organs of Anopheles mosquitoes. Life Sci. Allian. 2, e201800191 (2019).

    Article  Google Scholar 

  • 27.

    Dottorini, T. et al. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc. Natl. Acad. Sci. U.S.A. 104, 16215–16220 (2007).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Alfonso-Parra, C. et al. Mating-induced transcriptome changes in the reproductive tract of female Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Meier, R., Kotrba, M. & Ferrar, P. Ovoviviparity and viviparity in the Diptera. Biol. Rev. Camb. Philos. Soc. 74, 199–258 (1999).

    Article  Google Scholar 

  • 31.

    Lung, O. & Wolfner, M. F. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31, 543–551 (2001).

    CAS  Article  Google Scholar 

  • 32.

    Giglioli, M. & Mason, G. The mating plug in anopheline mosquitoes. Proc. R. Entomol. Soc. Lond. 41, 123–129 (1966).

    Google Scholar 

  • 33.

    Mitchell, S. N. et al. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Scolari, F. et al. The spermatophore in Glossina morsitans morsitans: Insights into male contributions to reproduction. Sci. Rep. https://doi.org/10.1038/srep20334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Kotrba, M. Sperm transfer by spermatophore in Diptera: New results from the Diopsidae. Zool. J. Linnean Soc. 117, 305–323 (1996).

    Article  Google Scholar 

  • 36.

    Attardo, G. M. et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 20, 187 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Rogers, D. W. et al. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc. Natl. Acad. Sci. U.S.A. 105, 19390–19395 (2008).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Gabrieli, P. et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 111, 16353–16358 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 108, 13677–13681 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J. & Tripet, F. Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med. Vet. Entomol. 24, 91–94 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Dixon, S. M., Coyne, J. A. & Noor, M. A. The evolution of conspecific sperm precedence in Drosophila. Mol. Ecol. 12, 1179–1184 (2003).

    Article  PubMed  Google Scholar 

  • 42.

    Price, C. S. Conspecific sperm precedence in Drosophila. Nature 388, 663 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Gwynne, D. T. Male mating effort, confidence of paternity, and insect sperm competition. In Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R.) 117 (Elsevier, Hoboken, 2012).

    Google Scholar 

  • 44.

    Hopkins, B. R. et al. Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 116, 17925–17933 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Hopkins, B. R., Sepil, I. & Wigby, S. Seminal fluid. Curr. Biol. 27, R404–R405 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Degrugillier, M. E. In vitro release of house fly, Musca domestica L. (Diptera: Muscidae), acrosomal material after treatments with secretion of female accessory gland and micropyle cap substance. Int. J. Insect Morphol. Embryol. 14, 381–391 (1985).

    Article  Google Scholar 

  • 47.

    Leopold, R. A. & Degrugillier, M. E. Sperm penetration of housefly eggs: Evidence for involvement of a female accessory secretion. Science 181, 555–557 (1973).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Lococo, D. & Huebner, E. The ultrastructure of the female accessory gland, the cement gland, in the insect Rhodnius prolixus. Tissue Cell 12, 557–580 (1980).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Marchini, D., Bernini, L. F., Marri, L., Giordano, P. C. & Dallai, R. The female reproductive accessory glands of the medfly Ceratitis capitata: antibacterial activity of the secretion fluid. Insect Biochem. 21, 597–605 (1991).

    CAS  Article  Google Scholar 

  • 50.

    Rosetto, M. et al. A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Psychodidae). Insect Mol. Biol. 12, 501–508 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 60, 289–310 (2006).

    Article  Google Scholar 

  • 52.

    Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Kaulenas, M. Insect Accessory Reproductive Structures: Function, Structure, and Development (Springer, Berlin, 2012).

    Google Scholar 

  • 55.

    Benoit, J., Kölliker, M. & Attardo, G. Putting invertebrate lactation in context. Science  363, 593–593 (2019).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Masci, V. L. et al. Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): Fine structure of the female accessory gland. Arthropod. Struct. Dev. 44, 378–387 (2015).

    Article  Google Scholar 

  • 57.

    Kelley, J. L. et al. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5, 4611 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Rosendale, A. J., Dunlevy, M. E., McCue, M. D. & Benoit, J. B. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 28, 49–65 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Raudvere, U. et al. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkz369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article  CAS  Google Scholar 

  • 61.

    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Teets, N. M. et al. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc. Natl. Acad. Sci U.S.A. 109, 20744–20749 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Telfer, W. H. & Kunkel, J. G. The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36, 205–228 (1991).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Burmester, T. Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213–226 (1999).

    CAS  Google Scholar 

  • 65.

    Burmester, T., Massey, H. C. Jr., Zakharkin, S. O. & Benes, H. The evolution of hexamerins and the phylogeny of insects. J. Mol. Evol. 47, 93–108 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 66.

    Swanson, W. J., Wong, A., Wolfner, M. F. & Aquadro, C. F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168, 1457–1465 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Panfilio, K. A. et al. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol. 20, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Olafson, P. U. et al. Functional genomics of the stable fly, Stomoxys calcitrans, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control. BioRxiv https://doi.org/10.1101/623009 (2019).

    Article  Google Scholar 

  • 69.

    Parisi, M. et al. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol. 5, R40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Cao, X. & Jiang, H. An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics 18, 796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    McKenna, D. D. et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17, 227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Pauchet, Y. et al. Pyrosequencing the Manduca sexta larval midgut transcriptome: Messages for digestion, detoxification and defence. Insect Mol. Biol. 19, 61–75 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Venancio, T., Cristofoletti, P., Ferreira, C., Verjovski-Almeida, S. & Terra, W. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol. Biol. 18, 33–44 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 74.

    Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 75.

    Shim, J., Gururaja-Rao, S. & Banerjee, U. Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647–4656 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Terashima, J. & Bownes, M. A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ. 12, 429 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 77.

    Xie, T. & Spradling, A. C. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122, 2099–2108 (1996).

    CAS  PubMed  Google Scholar 

  • 79.

    Soller, M., Bownes, M. & Kubli, E. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337–351 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 80.

    Qazi, M. C. B., Heifetz, Y. & Wolfner, M. F. The developments between gametogenesis and fertilization: Ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 256, 195–211 (2003).

    Article  CAS  Google Scholar 

  • 81.

    Lefebvre, F. A. & Lécuyer, É. Flying the RNA nest: Drosophila reveals novel insights into the transcriptome dynamics of early development. J. Dev. Biol. 6, 5 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • 82.

    Kim, T. & Kim, Y. Overview of innate immunity in Drosophila. J. Biochem. Mol. Biol. 38, 121 (2005).

    CAS  PubMed  Google Scholar 

  • 83.

    Gilmore, T. D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene 25, 6680 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Sosic, D. & Olson, E. N. A new twist on twist: Modulation of the NF-KappaB pathway. Cell Cycle 2, 75–77 (2003).

    Article  Google Scholar 

  • 85.

    Swevers, L., Raikhel, A., Sappington, T., Shirk, P. & Iatrou, K. Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In Comprehensive Molecular Insect Science (eds Gilbert, L. I. et al.) (Elsevier, Amsterdam, 2005).

    Google Scholar 

  • 86.

    Güiza, J., Barria, I., Saez, J. C. & Vega, J. L. Innexins: Expression, regulation and functions. Front. Physiol. 9, 1414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Bauer, R. et al. Intercellular communication: The Drosophila innexin multiprotein family of gap junction proteins. Chem. Biol. 12, 515–526 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 88.

    Richard, M. & Hoch, M. Drosophila eye size is determined by innexin 2-dependent decapentaplegic signalling. Dev. Biol. 408, 26–40 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 89.

    De Keuckelaere, E., Hulpiau, P., Saeys, Y., Berx, G. & Van Roy, F. Nanos genes and their role in development and beyond. Cell. Mol. Life Sci. 75, 1929–1946 (2018).

    Article  CAS  PubMed  Google Scholar 

  • 90.

    Quinlan, M. E. Cytoplasmic streaming in the Drosophila oocyte. Annu. Rev. Cell Dev. Biol. 32, 173–195 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 91.

    Doyen, C. M. et al. A testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of the paternal genome. Cell Rep. 13, 1310–1318 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Tirmarche, S., Kimura, S., Dubruille, R., Horard, B. & Loppin, B. Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat. Commun. 7, 13539 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 93.

    Loppin, B., Dubruille, R. & Horard, B. The intimate genetics of Drosophila fertilization. Open Biol. 5, 150076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 94.

    Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 95.

    DeLuca, S. Z. & O’Farrell, P. H. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22, 660–668 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 96.

    Bastock, R. & St Johnston, D. Drosophila oogenesis. Curr. Biol. 18, R1082–R1087 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 97.

    Kaulenas, M. Structure and function of the female accessory reproductive systems. In Insect Accessory Reproductive Structures (ed. Kaulenas, M.) 33–121 (Springer, Berlin, 1992).

    Google Scholar 

  • 98.

    Orr-Weaver, T. L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 31, 307–315 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Perry, J. C., Harrison, P. W. & Mank, J. E. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31, 1206–1219 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 100.

    Vanderperre, B. et al. MPC1-like is a placental mammal-specific mitochondrial pyruvate carrier subunit expressed in postmeiotic male germ cells. J. Biol. Chem. 291, 16448–16461 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 101.

    Rato, L. et al. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 102.

    Ramalho-Santos, J. et al. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. 15, 553–572 (2009).

    CAS  Google Scholar 

  • 103.

    Silva, J. V. et al. Amyloid precursor protein interaction network in human testis: Sentitnel proteins for male reproduction. BMC Bioinform. 16, 12 (2015).

    Article  CAS  Google Scholar 

  • 104.

    De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. U.S.A. 98, 12590–12595 (2001).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 105.

    Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 98, 15119–15124 (2001).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 106.

    Brucker, R. M., Funkhouser, L. J., Setia, S., Pauly, R. & Bordenstein, S. R. Insect Innate Immunity Database (IIID): An annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 107.

    Palmer, W. J. & Jiggins, F. M. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol. Biol. Evol. 32, 2111–2129 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 108.

    Stroumbakis, N. D., Li, Z. & Tolias, P. P. A homolog of human transcription factor NF-X1 encoded by the Drosophila shuttle craft gene is required in the embryonic central nervous system. Mol. Cell. Biol. 16, 192–201 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 109.

    Malik, A. et al. Development of resistance mechanism in mosquitoes: Cytochrome P450, the ultimate detoxifier. J. Appl. Emerg. Sci. 4, 100–117 (2016).

    Google Scholar 

  • 110.

    Rial, D. et al. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb. Chemosphere 145, 384–393 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 111.

    Rinehart, J. P. et al. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14223–14227 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 112.

    Michaud, M. R. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008).

    Article  CAS  Google Scholar 

  • 113.

    Teets, N. M., Kawarasaki, Y., Lee, R. E. Jr. & Denlinger, D. L. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B. 183, 189–201 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 114.

    Lv, D. K. et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459, 39–47 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 115.

    Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S. & Sinclair, B. J. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214, 4021–4029 (2011).

    Article  PubMed  Google Scholar 

  • 116.

    Ronges, D., Walsh, J. P., Sinclair, B. J. & Stillman, J. H. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 215, 1824–1836 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 117.

    Dunning, L. T. et al. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Compar. Biochem. Physiol. D Genomics Proteomics 8, 24–31 (2013).

    CAS  Article  Google Scholar 

  • 118.

    Lee, S.-M., Lee, S.-B., Park, C.-H. & Choi, J. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere 65, 1074–1081 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 119.

    Gusev, O. et al. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat. Commun. 5, 4784 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 120.

    Kaiser, T. S. et al. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 540, 69 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 121.

    Tran, D. T. & Ten Hagen, K. G. Mucin-type O-glycosylation during development. J. Biol. Chem. 288, 6921–6929 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 122.

    Tian, E. & Hagen, K. G. T. O-linked glycan expression during Drosophila development. Glycobiology 17, 820–827 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 123.

    Zhang, L., Zhang, Y. & Ten Hagen, K. G. A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J. Biol. Chem. 283, 34076–34086 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 124.

    Tran, D. T. et al. Multiple members of the UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287, 5243–5252 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 125.

    Sirot, L. K., Wong, A., Chapman, T. & Wolfner, M. F. Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harbor Perspect. Biol. 7, a017533 (2015).

    Article  CAS  Google Scholar 

  • 126.

    Baldini, F., Gabrieli, P., Rogers, D. W. & Catteruccia, F. Function and composition of male accessory gland secretions in Anopheles gambiae: A comparison with other insect vectors of infectious diseases. Pathog. Glob. Health 106, 82–93 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 127.

    Tian, C.-B. et al. Comparative transcriptome analysis of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct. Florida Entomol. 100, 42–51 (2017).

    Article  Google Scholar 

  • 128.

    Abraham, S. et al. The male ejaculate as inhibitor of female remating in two tephritid flies. J. Insect Physiol. 88, 40–47 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 129.

    Denis, B. et al. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. J. Insect Physiol. 99, 67–77 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 130.

    Attardo, G. M. et al. Ladybird late homeodomain factor regulates lactation specific expression of milk proteins during pregnancy in the tsetse fly (Glossina morsitans). PLoS Negl. Trop. Dis. 8, e2645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 131.

    Internation Glossina Genome Consortium. Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis. Science 344, 380–386 (2014).

    Article  CAS  Google Scholar 

  • 132.

    Larsen, W. J. Cell remodeling in the fat body of an insect. Tissue Cell 8, 73–92 (1976).

    CAS  Article  PubMed  Google Scholar 

  • 133.

    Keeley, L. Endocrine regulation of fat body development and function. Annu. Rev. Entomol. 23, 329–352 (1978).

    CAS  Article  Google Scholar 

  • 134.

    Denlinger, D. L. & Ma, W.-C. Dynamics of the pregnancy cycle in the tsetse Glossina morsitans. J. Insect Physiol. 20, 1015–1026 (1974).

    CAS  Article  PubMed  Google Scholar 

  • 135.

    Ma, W. C., Denlinger, D. L., Jarlfors, U. & Smith, D. S. Structural modulations in the tsetse fly milk gland during a pregnancy cycle. Tissue Cell 7, 319–330 (1975).

    CAS  Article  PubMed  Google Scholar 

  • 136.

    Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).

    Article  Google Scholar 

  • 137.

    Otti, O., Naylor, R. A., Siva-Jothy, M. T. & Reinhardt, K. Bacteriolytic activity in the ejaculate of an insect. Am. Nat. 174, 292–295 (2009).

    Article  PubMed  Google Scholar 

  • 138.

    Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Moist habitats are essential for adults of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), to avoid dehydration. Eur. J. Entomol. 104, 9–14 (2007).

    Article  Google Scholar 

  • 139.

    Aguila, J. R., Hoshizaki, D. K. & Gibbs, A. G. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J. Exp. Biol. 216, 399–406 (2013).

    Article  PubMed  Google Scholar 

  • 140.

    Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007).

    Article  PubMed  Google Scholar 

  • 141.

    Rosa, E. & Saastamoinen, M. Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: Only a matter of size? Oecologia 184, 633–642 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 142.

    Hagan, R. W. et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. 8, 6804 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 143.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 144.

    Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 145.

    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 146.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 147.

    da Huang, W. et al. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinform. https://doi.org/10.1002/0471250953.bi131 (2009).

    Article  Google Scholar 

  • 148.

    Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 149.

    Clark, N. & Maayan, A. Introduction to statistical methods for analyzing large data sets: Gene set enrichment analysis (GSEA). Sci. Signal. https://doi.org/10.1126/scisignal.2001966 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 150.

    Kim, S. et al. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. GigaScience 6, 009 (2017).

    Google Scholar 

  • 151.

    Benoit, J. B. et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 7, 10165 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 152.

    Eddy, S. R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009: Genome Informatics Series (eds Morishita, S. et al.) 205–211 (World Scientific, Yokohama, 2009).

    Google Scholar 

  • 153.

    Weirauch, M. T. & Hughes, T. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. In A Handbook of Transcription Factors (ed. Hughes, T. R.) 25–73 (Springer, Dordrecht, 2011).

    Google Scholar 

  • 154.

    Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 155.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 156.

    Rosendale, A. J., Romick-Rosendale, L. E., Watanabe, M., Dunlevy, M. E. & Benoit, J. B. Mechanistic underpinnings of dehydration stress in ticks revealed through RNA-seq and metabolomics. J. Exp. Biol. 219, 1808–1819 (2016).

    Article  PubMed  Google Scholar 

  • 157.

    Benoit, J. B. et al. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl. Trop. Dis. 12, e0006204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 158.

    Turnier, J. L. et al. Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity. Rheumatology 58, 321–330 (2018).

    Article  CAS  Google Scholar 

  • 159.

    Heaven, M. R. et al. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics—A prototype design for a single injection assay. J. Mass Spectrom. 51, 1–11 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 160.

    Convey, P. Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), introduced to Signy Island, maritime Antarctic. Polar Biol. 12, 653–657 (1992).

    Article  Google Scholar 

  • 161.

    Lefkovitch, L. The study of population growth in organisms grouped by stages. Biometrics 21, 1–18 (1965).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology