in

N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont

  • 1.

    Lee, S. Y. et al. Reassessment of mangrove ecosystem services. Glob. Ecol. Biogeogr. 23, 726–743 (2014).

    Google Scholar 

  • 2.

    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).

    Google Scholar 

  • 3.

    Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20(1), GB1012. https://doi.org/10.1029/2005GB002570 (2006).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Kristensen, E., Bouillon, S., Dittmard, T. & Marchande, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).

    CAS  Google Scholar 

  • 5.

    Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30(9), 1148–1160 (2010).

    CAS  PubMed  Google Scholar 

  • 6.

    Woolfe, K. J., Dale, P. J. & Brunskill, G. J. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Mar. Lett. 15(3–4), 140–144 (1995).

    ADS  Google Scholar 

  • 7.

    Woitchik, A. F. et al. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation. Biogeochemistry 39(1), 15–35 (1997).

    CAS  Google Scholar 

  • 8.

    Zuberer, D. & Silver, W. S. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35(3), 567–575 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).

    ADS  Google Scholar 

  • 10.

    Welsh, D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol. 19, 321–342 (2003).

    CAS  Google Scholar 

  • 11.

    Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10(12), 7829–7846 (2013).

    ADS  Google Scholar 

  • 12.

    Gilbertson, W. W., Solan, M. & Prosser, J. I. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82, 11–12 (2012).

    PubMed  Google Scholar 

  • 13.

    Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. & Widdicombe, S. Bioturbation: impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39, 315–320 (2011).

    CAS  PubMed  Google Scholar 

  • 14.

    Magri, M. et al. Benthic N pathways in illuminated and bioturbated sediments studied with network analysis. Limnol. Oceanogr. 63, S68–S84. https://doi.org/10.1002/lno.10724 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).

    ADS  Google Scholar 

  • 16.

    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchioco, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749. https://doi.org/10.1038/s41598-019-40315-0 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Cuellar-Gempeler, C. & Leibold, M. A. Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME J. 12(3), 825–837 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Reinsel, K. A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313, 1–17 (2004).

    Google Scholar 

  • 19.

    Nordhaus, I., Diele, K. & Wolff, M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 374, 104–112 (2009).

    Google Scholar 

  • 20.

    Nordhaus, I. & Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar. Biol. 151, 1665–1681 (2007).

    Google Scholar 

  • 21.

    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92, 629–638 (2011).

    ADS  CAS  Google Scholar 

  • 22.

    Quintana, C. O. et al. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments. Sci. Rep. 5, 16122. https://doi.org/10.1038/srep16122 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Thongtham, N. & Kristensen, E. Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions. Vie et Milieu 53, 141–151 (2003).

    Google Scholar 

  • 24.

    De la Iglesia, H. O., Rodríguez, E. M. & Dezi, R. E. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55(5), 913–919 (1994).

    PubMed  Google Scholar 

  • 25.

    Arfken, A., Song, B., Bowman, J. S. & Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071. https://doi.org/10.1371/journal.pone.0185071 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Caffrey, J. M., Hollibaugh, J. T. & Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 112(1–2), 86–90 (2016).

    CAS  PubMed  Google Scholar 

  • 27.

    Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).

    ADS  CAS  Google Scholar 

  • 28.

    Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15(7), 1943–1955 (2013).

    CAS  PubMed  Google Scholar 

  • 29.

    Ray, N. E., Henning, M. C. & Fulweiler, R. W. Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 621, 95–105 (2019).

    ADS  CAS  Google Scholar 

  • 30.

    Stief, P. et al. Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiol. Ecol. 94(10), fiy144. https://doi.org/10.1093/femsec/fiy144 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  • 31.

    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Foshtomi, M. Y. et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE 10, e0130116. https://doi.org/10.1371/journal.pone.0130116 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Pelegri, S. P., Nielsen, L. P. & Blackburn, T. H. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105(3), 285–290 (1994).

    ADS  Google Scholar 

  • 34.

    Stief, P. & Beer, D. D. Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnol. Oceanogr. 51, 2538–2548 (2006).

    ADS  Google Scholar 

  • 35.

    Pischedda, L., Cuny, P., Esteves, J. L., Pogiale, J. C. & Gilbert, F. Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680, 109–124 (2012).

    CAS  Google Scholar 

  • 36.

    Poulsen, M., Kofoed, M. V., Larsen, L. H., Schramm, A. & Stief, P. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Syst. Appl. Microbiol. 37, 51–59 (2014).

    CAS  PubMed  Google Scholar 

  • 37.

    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16196. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).

    CAS  Article  Google Scholar 

  • 38.

    Samuiloviene, A. et al. The effect of chironomid larvae on nitrogen cycling and microbial communities in soft sediments. Water 11, 1931. https://doi.org/10.3390/w11091931 (2019).

    CAS  Article  Google Scholar 

  • 39.

    Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves nd consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).

    CAS  Google Scholar 

  • 40.

    Nagata, R. M., Moreira, M. Z., Pimentel, C. R. & Morandini, A. C. Food web characterization based on d15N and d13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar. Ecol. Progr. Ser. 519, 13–27 (2015).

    ADS  CAS  Google Scholar 

  • 41.

    Alfaro-Espinoza, G. & Ullrich, M. S. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front. Microbiol. 6, 445. https://doi.org/10.3389/fmicb.2015.00445 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Jiménez, M.F.S.-S., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj.5583 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78(23), 8264–8271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Dias, A. C. F. et al. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98, 541–551 (2010).

    PubMed  Google Scholar 

  • 45.

    Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546. https://doi.org/10.3389/fmicb.2016.01546 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Zehr, J. P., Church, M. J. & Moisander, P. H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences (ed. Neretin, L.) 64, 337–369 (Springer, Berlin, 2006).

    Google Scholar 

  • 47.

    Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 7, 795. https://doi.org/10.3389/fmicb.2014.00795 (2015).

    Article  Google Scholar 

  • 48.

    Beltrán, Y., Centeno, C. M., García-Oliva, F., Legendre, P. & Falcón, L. I. N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat. Microb. Ecol. 65, 15–24 (2012).

    Google Scholar 

  • 49.

    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607. https://doi.org/10.1038/srep15607 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Rasigraf, O., Schmitt, J., Jetten, M. S. M. & Lüke, C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiol. Open 6(4), 1. https://doi.org/10.1002/mbo3.475 (2017).

    CAS  Article  Google Scholar 

  • 51.

    Zhang, S. et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 6, 36178. https://doi.org/10.1038/srep36178 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132(3), 203–208 (1995).

    CAS  PubMed  Google Scholar 

  • 53.

    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Jiang, X., Dang, H. & Jiao, N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS ONE 10(2), e0117473. https://doi.org/10.1371/journal.pone.0117473 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Xu, T. et al. Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genom. 16, 772. https://doi.org/10.1186/s12864-015-2005-3 (2015).

    CAS  Article  Google Scholar 

  • 56.

    Li, J. et al. Janibacter alkaliphilus sp. nov., isolated from coral Anthogorgia sp. Antonie Van Leeuwenhoek 102(1), 157–162 (2012).

    CAS  PubMed  Google Scholar 

  • 57.

    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R. 61(4), 533–616 (1997).

    CAS  Google Scholar 

  • 58.

    Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85(2), 348–357 (2013).

    CAS  PubMed  Google Scholar 

  • 59.

    Glaeser, S. P. & Kämpfer, P. The family Sphingomonadaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 641–707 (Springer, Berlin, 2014).

    Google Scholar 

  • 60.

    Katayama, Y., Hiraishi, A. & Kuraishi, H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141, 1469–1477 (1995).

    CAS  PubMed  Google Scholar 

  • 61.

    Kraft, B., Tegetmeyer, H. E., Meier, D., Geelhoed, J. S. & Strous, M. Rapid succession of uncultured marine bacterialand archaeal populations in a denitrifying continuous culture. Environ. Microbiol. 16(10), 3275–3286 (2014).

    CAS  PubMed  Google Scholar 

  • 62.

    Härtig, E. & Zumft, W. G. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. Res. 181(1), 161–166 (1999).

    Google Scholar 

  • 63.

    Marchant, H. K. et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11, 1799–1812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Patureau, D., Zumstein, E., Delgenes, J. P. & Moletta, R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145–152 (2000).

    CAS  PubMed  Google Scholar 

  • 65.

    Ji, B. et al. Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol. Bioproc. E 20(4), 643–651 (2015).

    CAS  Google Scholar 

  • 66.

    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Luvizotto, D. M. et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An. Acad. Bras. Ciênc. 91, e20180373. https://doi.org/10.1590/0001-3765201820180373 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Weihrauch, D., Sandra Fehsenfeld, S. & Quijada-Rodriguez, A. Nitrogen excretion in aquatic crustaceans. In Acid–Base Balance and Nitrogen Excretion in Invertebrate (eds Weihrauch, D. & O’Donnell, M.) 1–25 (Springer, Berlin, 2017).

    Google Scholar 

  • 69.

    Jiang, D.-H., Lawrence, A. L., Neill, W. H. & Gong, H. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles. J. Exp. Mar. Biol. Ecol. 253(2), 193–209 (2000).

    CAS  PubMed  Google Scholar 

  • 70.

    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Citadin, M., Costa, T. M. & Netto, S. A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Aust. Ecol. 41(5), 572–579 (2016).

    Google Scholar 

  • 72.

    Dyea, A. H. & Lasiak, T. A. Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Phys. Part A 87(2), 341–344 (1987).

    Google Scholar 

  • 73.

    Hopkins, P. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163, 301–319 (1982).

    Google Scholar 

  • 74.

    Masunari, S. Distribuição e abundância dos caranguejos Uca Leach (Crustacea, Decapoda, Ocypodidae) na Baía de Guaratuba, Paraná, Brasil. Rev. Bras. Zool. 23(4), 901–914 (2006).

    Google Scholar 

  • 75.

    Fusi, M. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803(1), 251–263 (2017).

    Google Scholar 

  • 76.

    Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).

    PubMed  Google Scholar 

  • 77.

    Christy, J. H. Predation and the reproductive behavior of fiddler crabs (Genus Uca). In Evolutionary Ecology of Social and Sexual Systems—Crustaceans as Model Organisms (eds Duffy, E. J. & Thiel, M.) 211–231 (Oxford University Press, Oxford, 2007).

    Google Scholar 

  • 78.

    Teal, J. M. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool. 32, 1–14 (1959).

    Google Scholar 

  • 79.

    Michaels, R. E. & Zieman, J. C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 444, 104–113 (2013).

    Google Scholar 

  • 80.

    Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10), 596. https://doi.org/10.3390/f9100596 (2018).

    Article  Google Scholar 

  • 81.

    Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. & Saldanha-Corrêa, F. M. P. Bacterial and phytoplankton dynamics in a sub-tropical Estuary. Hydrobiologia 598, 229–246 (2008).

    Google Scholar 

  • 82.

    Bérgamo, A. L. Característica da hidrografia, circulação e transporte de sal: Barra de Cananéia, sul do Mar de Cananéia e Baía do Trapandé (Master in Physical Oceanography) (Universidade de São Paulo, São Paulo, Instituto Oceanográfico, 2000).

    Google Scholar 

  • 83.

    Cunha-Lignon, M. Dinâmica do Manguezal no Sistema Cananéia-Iguape, Estado de São Paulo—Brasil. Dissertação (Master in Biological Oceanography). Instituto Oceanográfico, Universidade de São Paulo, São Paulo (2001).

  • 84.

    Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE 8, e68739. https://doi.org/10.1371/journal.pone.0068739 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 87.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29(23), 3100–3101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357. https://doi.org/10.1038/nmeth.1923 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 90.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS  PubMed  Google Scholar 

  • 92.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 93.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. Res. 215, 403–410 (1990).

    CAS  Google Scholar 

  • 94.

    Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).

    CAS  PubMed  Google Scholar 

  • 95.

    Risgaard-Petersen, N. et al. Anaerobic ammonium oxidation in an estuarine. Aquat. Microb. Ecol. 36, 293–304 (2004).

    Google Scholar 

  • 96.

    Tréguer, P. & Le Corre, P. Manuel d’analysis des sels nutritifs dans l’eau de mer 2nd edn, 110 (Université de Bretagne Occidentale, Brest, 1975).

    Google Scholar 

  • 97.

    Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).

    CAS  Google Scholar 

  • 98.

    Colt, J. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure 2nd edn. (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 99.

    De Brabandere, L. et al. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2), 131–152 (2015).

    Google Scholar 

  • 100.

    Warembourg, F. R. Nitrogen fixation in soil and plant systems. In Nitrogen Isotope Techniques (eds Knowles, R. & Blackburn, T. H.) 127–156 (Academic Press, Cambridge, 1993).

    Google Scholar 

  • 101.

    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3), 1312–1318 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 102.

    Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61(5), 1900–1915 (2016).

    ADS  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Climate-driven changes in the composition of New World plant communities

    Mobility Systems Center awards four projects for low-carbon transportation research