in

Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters

  • 1.

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 1–12, https://doi.org/10.1038/nature19355 (2016).

  • 2.

    Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

  • 3.

    Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature, https://doi.org/10.1038/s41586-018-0610-4 (2018).

  • 4.

    Schopf, J. W. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science (New York, N.Y.) 260, 640–646 (1993).

  • 5.

    Brasier, M. D., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 887–902 (2006).

  • 6.

    Wacey, D. Early Life on Earth. 31, (Springer Netherlands, 2009).

  • 7.

    Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

  • 8.

    Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early archaean isua metasedimentary rocks. Nature Geoscience 7, 25–28 (2014).

  • 9.

    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences of the United States of America 112, 5915–5920 (2015).

  • 10.

    Lemelle, L. et al. X-ray imaging techniques and exobiology. Journal de Physique IV (Proceedings) 104, 377–380 (2003).

  • 11.

    Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351–368 (2003).

  • 12.

    Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. & Czaja, A. D. Laser–Raman imagery of Earth’s earliest fossils. Nature 416, 73–76 (2002).

  • 13.

    Wacey, D., Fisk, M., Saunders, M., Eiloart, K. & Kong, C. Critical testing of potential cellular structures within microtubes in 145 Ma volcanic glass from the Argo Abyssal Plain. Chemical Geology 466, 575–587 (2017).

  • 14.

    Schopf, J. W. & Kudryavtsev, A. B. Biogenicity of Earth’s earliest fossils: A resolution of the controversy. Gondwana Research 22, 761–771 (2012).

  • 15.

    Alleon, J. et al. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nature Communications 7, 11977 (2016).

  • 16.

    Lepot, K. et al. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nature Communications 8, (2017).

  • 17.

    Wacey, D., Battison, L., Garwood, R. J., Hickman-Lewis, K. & Brasier, M. D. Advanced analytical techniques for studying the morphology and chemistry of Proterozoic microfossils. Geological Society, London, Special Publications 448, 81–104 (2017).

  • 18.

    Wacey, D. et al. Taphonomy of very ancient microfossils from the 3400 Ma Strelley Pool Formation and 1900 Ma Gunflint Formation: New insights using a focused ion beam. Precambrian Research 220–221, 234–250 (2012).

  • 19.

    Brasier, M. D., Antcliffe, J., Saunders, M. & Wacey, D. Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences 112, 4859–4864 (2015).

  • 20.

    Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

  • 21.

    Holler, M. et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Scientific reports 4, 3857 (2014).

  • 22.

    Diaz, A. et al. Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography. Journal of Structural Biology 192, 461–469 (2015).

  • 23.

    Diaz, A. et al. Quantitative x-ray phase nanotomography. Physical Review B 85, 1–4 (2012).

    • Google Scholar
  • 24.

    De Boever, W. et al. Characterization of composition and structure of clay minerals in sandstone with ptychographic X-ray nanotomography. Applied Clay Science 118, 258–264 (2015).

    • Article
    • Google Scholar
  • 25.

    Moreau, J. W. & Sharp, T. G. A Transmission Electron Microscopy Study of Silica and Kerogen Biosignatures in ~1.9 Ga Gunflint Microfossils. Astrobiology 4, 196–210 (2004).

  • 26.

    Schelble, R. T., Westall, F. & Allen, C. C. 1.8 Ga iron-mineralized microbiota from the Gunflint Iron Formation, Ontario, Canada: Implications for Mars. Advances in Space Research 33, 1268–1273 (2004).

  • 27.

    Shapiro, R. S. & Konhauser, K. O. Hematite-coated microfossils: Primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic? Geobiology 13, 209–224 (2015).

  • 28.

    Barghoorn, E. S. & Tyler, S. A. Microorganisms from the Gunflint Chert: These structurally preserved Precambrian fossils from Ontario are the most ancient organisms known. Science 147, 563–575 (1965).

  • 29.

    Jagadisan, A., Yang, A. & Heidari, Z. Experimental quantification of the impact of thermal maturity on kerogen density. Petrophysics 58, 603–612 (2017).

    • Google Scholar
  • 30.

    Okiongbo, K. S., Aplin, A. C. & Larter, S. R. Changes in Type II Kerogen Density as a Function of Maturity: Evidence from the Kimmeridge Clay Formation. 2495–2499 (2005).

  • 31.

    Bousige, C. et al. Realistic molecular model of kerogen’s nanostructure. Nature Materials 15, 576–582 (2016).

  • 32.

    Vandenbroucke, M. & Largeau, C. Kerogen origin, evolution and structure. Organic Geochemistry 38, 719–833 (2007).

  • 33.

    Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence. Journal of Physics A: Mathematical and Theoretical 44 (Springer Berlin Heidelberg, 1984).

  • 34.

    Cornell, R. M. & Schwertmann, U. The Iron Oxides Structure, Properties, Reactions, Occurences and Uses (2003).

  • 35.

    de Faria, D. L. A., Venâncio Silva, S. & de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy 28, 873–878 (1997).

  • 36.

    Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International 177, 941–948 (2009).

  • 37.

    Bernard, S. et al. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. 262, 257–272 (2007).

  • 38.

    Buick, R. Microfossil Recognition in Archean Rocks: An Appraisal of Spheroids and Filaments from a 3500 M.Y. Old Chert-Barite Unit at North Pole, Western Australia. Palaios 5, 441–459 (1990).

  • 39.

    Benzerara, K., Bernard, S. & Miot, J. Mineralogical Identification of Traces of Life. In Advances in Astrobiology and Biogeophysics 123–144, https://doi.org/10.1007/978-3-319-96175-0_6 (Springer, Cham, 2019).

  • 40.

    Hickman-Lewis, K., Garwood, R. J., Withers, P. J. & Wacey, D. X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains. Geological Society, London, Special Publications 448, SP448.11 (2016).

    • Google Scholar
  • 41.

    Holler, M. et al. OMNY PIN – A versatile sample holder for tomographic measurements at room and cryogenic temperatures. Review of Scientific Instruments 88, (2017).

  • 42.

    Holler, M. et al. An instrument for 3D x-ray nano-imaging. Review of Scientific Instruments 83, 073703 (2012).

  • 43.

    Huang, X. et al. Optimization of overlap uniformness for ptychography. Optics Express, https://doi.org/10.1364/OE.22.012634 (2014).

  • 44.

    Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338–343 (2009).

  • 45.

    Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New Journal of Physics 14, 063004 (2012).

  • 46.

    Guizar-Sicairos, M. et al. Phase tomography from x-ray coherent diffractive imaging projections. Optics Express 19, 21345 (2011).

  • 47.

    Guizar-Sicairos, M. et al. Quantitative interior x-ray nanotomography by a hybrid imaging technique. Optica 2, 259 (2015).

  • 48.

    van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. Journal of Structural Biology 151, 250–262 (2005).

    • Article
    • Google Scholar
  • 49.

    Ungerer, P., Collell, J. & Yiannourakou, M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy and Fuels 29, 91–105 (2015).

  • 50.

    Harrison, R. J. & Feinberg, J. M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems 9, (2008).


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders