in

Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants

  • 1.

    Schoener, T. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

  • 2.

    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).

    • Article
    • Google Scholar
  • 3.

    McKane, R. B. et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71 (2002).

  • 4.

    Pyke, G. H. Local geographic distributions of bumblebees near Crested Butte, Colorado: competition and community structure. Ecology 63, 555–573 (1982).

    • Article
    • Google Scholar
  • 5.

    Ceulemans, T. et al. Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nat. Plants 3, 16224 (2017).

    • Article
    • Google Scholar
  • 6.

    Lambers, H., Brundrett, M. C., Raven, J. A. & Hopper, S. D. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334, 11–31 (2010).

  • 7.

    Wassen, M. J., Venterink, H. O., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).

  • 8.

    Ceulemans, T. et al. Soil phosphorus constrains biodiversity across European grasslands. Glob. Chang. Biol. 20, 3814–3822 (2014).

    • Article
    • Google Scholar
  • 9.

    Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698–702 (2008).

  • 10.

    Ahmad-Ramli, M. F., Cornulier, T. & Johnson, D. Partitioning of soil phosphorus regulates competition between Vaccinium vitis-idaea and Deschampsia cespitosa. Ecol. Evol. 3, 4243–4252 (2013).

    • Article
    • Google Scholar
  • 11.

    Steidinger, B. S., Turner, B. L., Corrales, A. & Dalling, J. W. Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Funct. Ecol. 29, 131–130 (2014).

    • Google Scholar
  • 12.

    Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).

    • Article
    • Google Scholar
  • 13.

    Richardson, A. E. et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349, 121–156 (2011).

  • 14.

    Erel, R. et al. Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant Soil 412, 115–132 (2017).

  • 15.

    Critchley, C. N. R. et al. Plant species richness, functional type and soil properties of grasslands and allied vegetation in English Environmentally Sensitive Areas. Grass Forage Sci. 57, 82–92 (2002).

    • Article
    • Google Scholar
  • 16.

    Harley, J. L. & Harley, E. L. A check-list of mycorrhiza in the British flora. New Phytol. 105, 1–102 (1987).

    • Article
    • Google Scholar
  • 17.

    Smith, S. E. & Read, D. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  • 18.

    Joner, E. J., Ravnskov, S. & Jakobsen, I. Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol. Lett. 22, 1705–1708 (2000).

  • 19.

    Koide, R. T. & Kabir, Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148, 511–517 (2000).

  • 20.

    Shane, M. W., Cawthray, G. R., Cramer, M. D., Kuo, J. & Lambers, H. Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ. 29, 1989–1999 (2006).

  • 21.

    Tyler, G. & Ström, L. Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Ann. Bot. 75, 75–78 (1995).

  • 22.

    Schöttelndreier, M., Norddahl, M. M., Ström, L. & Falkengren-Grerup, U. Organic acid exudation by wild herbs in response to elevated Al concentrations. Ann. Bot. 87, 769–775 (2001).

    • Article
    • Google Scholar
  • 23.

    von Wandruszka, R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 7, 6 (2006).

    • Article
    • Google Scholar
  • 24.

    Bünemann, E. K. Assessment of gross and net mineralization rates of soil organic phosphorus – a review. Soil Biol. Biochem. 89, 82–98 (2015).

    • Article
    • Google Scholar
  • 25.

    Carroll, J. A., Caporn, S. J. M., Johnson, D., Morecroft, M. D. & Lee, J. A. The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition. Environ. Pollut. 121, 363–376 (2003).

  • 26.

    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).

    • Article
    • Google Scholar
  • 27.

    Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).

  • 28.

    Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156, 1078–1086 (2011).

  • 29.

    Hunter, R., Hawkins, H. J. & Cramer, M. D. Cluster roots of Proteaceae exude acid phosphatase enzymes as an adaptation to low-P soils, facilitating access to soil organic phosphate. S. Afr. J. Bot. 75, 406 (2009).

    • Article
    • Google Scholar
  • 30.

    Güsewell, S. Regulation of dauciform root formation and root phosphatase activities of sedges (Carex) by nitrogen and phosphorus. Plant Soil 415, 57–72 (2017).

    • Article
    • Google Scholar
  • 31.

    Houle, D., Moore, J.-D., Ouimet, R. & Marty, C. Tree species partition N uptake by soil depth in boreal forests. Ecology 95, 1127–1133 (2014).

  • 32.

    Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J. & Veneklaas, E. J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98, 693–713 (2006).

    • Article
    • Google Scholar
  • 33.

    Lambers, H., Raven, J. A., Shaver, G. R. & Smith, S. E. Plant nutrient acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103 (2008).

    • Article
    • Google Scholar
  • 34.

    Johnson, P. A. Soil Survey Record No. 4: Soils in Derbyshire 1 Ch. 3 (Rothamsted Experimental Station, 1971).

  • 35.

    Turner, B., Mahieu, N. & Condron, L. M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci. Soc. Am. J. 67, 497–510 (2003).

  • 36.

    Horswill, P., O’Sullivan, O., Phoenix, G. K., Lee, J. A. & Leake, J. R. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 155, 336–349 (2008).

  • 37.

    Robertson, I. G. Organic Phosphorus (P) in Agricultural Soil and the Ability of Wheat to Use This as a P Source. PhD thesis, Univ. Sheffield (2018).

  • 38.

    Feinberg, A. P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

  • 39.

    Feinberg, A. P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Anal. Biochem. 137, 266–267 (1984).

  • 40.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).


  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean