in

Nitrogen emissions along global livestock supply chains

  • 1.

    De Haan, C., Gerber, P. & Opio, C. in Livestock in a Changing Landscape Vol. 1 (eds Steinfeld, H., Harold, A. M., Schneider, F. & Neville, E. L.) 35–50 (Island Press, 2010).

  • 2.

    Freeman, H., Thornton, P. K., van de Steeg, J. A. & Mcleod, A. in Animal Production and Animal Science Worldwise. WAAP Book of the Year − 2006: A Review of Developments and Research in Livestock Systems Vol. 3 (eds Rosati, A., Tewolde, A. & Mosconi, C.) 219–232 (Wageningen Academic Publishers, 2007).

  • 3.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  • 4.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    ADS  PubMed  Google Scholar 

  • 5.

    Galloway, J. N. et al. The nitrogen cascade. BioScience 53, 341–356 (2003).

    Google Scholar 

  • 6.

    Statistical Databases (Statistics Division, FAO, 2018); http://faostat3.fao.org/home/E

  • 7.

    Heffer, P., Gruère, A. & Roberts, T. Assessment of Fertilizer Use by Crop at the Global Level (International Fertilizer Industry Assocication, 2017).

  • 8.

    Sutton, M. A. et al. Our Nutrient World: the Challenge to Produce More Food and Energy with Less Pollution. Global Overview of Nutrient Management (Centre for Ecology and Hydrology on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative, 2013).

  • 9.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans. R. Soc. B 368, 20130166 (2013).

    PubMed  Google Scholar 

  • 11.

    Hamilton, H. A. et al. Trade and the role of non-food commodities for global eutrophication. Nat. Sustain. 1, 314–321 (2018).

    Google Scholar 

  • 12.

    Ascott, M. J. et al. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 8, 1416 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Phil. Trans. R. Soc. B 368, 20130116 (2013).

    PubMed  Google Scholar 

  • 14.

    Transforming our World: The 2030 Agenda for Sustainable Development General Assembly 70th Session (United Nations, 2015).

  • 15.

    Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Conijn, J. G., Bindraban, P. S., Schröder, J. J. & Jongschaap, R. E. E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 251, 244–256 (2018).

    CAS  Google Scholar 

  • 17.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    ADS  CAS  Google Scholar 

  • 19.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    ADS  Google Scholar 

  • 21.

    Global Livestock Environmental Assessment Model. Version 2. Data Reference Year: 2010 (FAO, 2018); http://www.fao.org/fileadmin/user_upload/gleam/docs/GLEAM_2.0_Model_description.pdf

  • 22.

    OECD-FAO Agricultural Outlook 2019–2028 (OECD Publishing/FAO, 2019).

  • 23.

    Beig, G. et al. in The Indian Nitrogen Assessment 403–426 (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-811836-8.00025-2

  • 24.

    Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).

    ADS  PubMed  Google Scholar 

  • 25.

    Wint, G. R. W. & Robinson T. P. Gridded Livestock of the World 2007 (FAO, 2007).

  • 26.

    Gerber, P. et al. Tackling Climate Change through Livestock—a Global Assessment of Emissions and Mitigation Opportunities (FAO, 2013).

  • 27.

    Bos, J. F. F. P. & de Wit, J. Environmental Impact Assessment of Landless Monogastric Livestock Production Systems. Working Document Livestock and the Environment: Finding a Balance (FAO/World Bank/USAID, 1996); https://research.wur.nl/en/publications/environmental-impact-assessment-of-landless-monogastric-livestock

  • 28.

    Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    van der Hoek, K. W. Nitrogen efficiency in global animal production. Environ. Pollut. 102, 127–132 (1998).

    Google Scholar 

  • 30.

    EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016 (EEA, 2016).

  • 31.

    Vonk, J. et al. Methodology for Estimating Emissions from Agriculture in the Netherlands—Update 2018. Calculations of CH 4, NH 3, N 2O, NO x, PM 10, PM 2.5and CO 2with the National Emission Model for Agriculture (NEMA) (Statutory Research Tasks Unit for Nature & the Environment, 2018).

  • 32.

    Gerber, P., Robinson, T., Wassenaar, T. & Steinfeld, H. in Livestock in a Changing Landscape Vol. 1 (eds Steinfeld, H., Harold, A. M., Fritz, S. & Laurie, E. N.) 51–66 (Island Press, 2010).

  • 33.

    Sutton, M. A. et al. The European Nitrogen Assessment (Cambridge Univ. Press, 2011).

  • 34.

    Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118, 225–241 (2014).

    Google Scholar 

  • 35.

    The International Code of Conduct for the Sustainable Use and Management of Fertilizers (FAO, 2018).

  • 36.

    Hendriks, C. et al. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe. Atmos. Environ. 131, 83–96 (2016).

    ADS  CAS  Google Scholar 

  • 37.

    Lauer, M., Hansen, J. K., Lamers, P. & Thrän, D. Making money from waste: the economic viability of producing biogas and biomethane in the Idaho dairy industry. Appl. Energy 222, 621–636 (2018).

    Google Scholar 

  • 38.

    van Grinsven, H. J. M., Erisman, J. W., de Vries, W. & Westhoek, H. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environ. Res. Lett. 10, 025002 (2015).

    ADS  Google Scholar 

  • 39.

    Bai, Z. et al. China’s livestock transition: driving forces, impacts and consequences. Sci. Adv. 4, eaar8534 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain 3, 200–208 (2020).

    Google Scholar 

  • 41.

    Mapiye, O., Chikwanha, O. C., Makombe, G., Dzama, K. & Mapiye, C. Livelihood, food and nutrition security in southern Africa: what role do indigenous cattle genetic resources play?. Diversity 12, 74 (2020).

    CAS  Google Scholar 

  • 42.

    Davis, T. C. & White, R. R. Breeding animals to feed people: the many roles of animal reproduction in ensuring global food security. Theriogenology 150, 27–33 (2020).

    CAS  PubMed  Google Scholar 

  • 43.

    World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals 222 (FAO, 2018).

  • 44.

    Mehrabi, Z., Gill, M., Wijk, M., van, Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1, 160–165 (2020).

    Google Scholar 

  • 45.

    Weiler, V., Udo, H. M., Viets, T., Crane, T. A. & De Boer, I. J. Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya. Curr. Opin. Environ. Sustain. 8, 29–38 (2014).

    Google Scholar 

  • 46.

    Sustainable Nitrogen Management UNEP/EA.4/L.16 (United Nations Environment Assembly of UNEP, 2019).

  • 47.

    Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Google Scholar 

  • 48.

    Uwizeye, A., Gerber, P. J., Schulte, R. P. O. & de Boer, I. J. M. A comprehensive framework to assess the sustainability of nutrient use in global livestock supply chains. J. Clean. Prod. 129, 647–658 (2016).

    Google Scholar 

  • 49.

    2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).

  • 50.

    Velthof, G. et al. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Qual. 38, 402–417 (2009).

    CAS  PubMed  Google Scholar 

  • 51.

    Carslaw, D. C. & Rhys-Tyler, G. New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos. Environ. 81, 339–347 (2013).

    ADS  CAS  Google Scholar 

  • 52.

    Technical Conversion Factors for Agricultural Commodities (FAO, 2003).

  • 53.

    Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).

    Google Scholar 

  • 54.

    Bertoli, S., Goujon, M. & Santoni, O. The CERDI-Seadistance Database (2016); https://halshs.archives-ouvertes.fr/halshs-01288748/document

  • 55.

    Smith, T. et al. Third IMO Greenhouse Gas Study 2014, 327 (International Maritime Organization, 2014).

  • 56.

    Bai, Z. et al. Nitrogen, phosphorus and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Bai, Z. et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ. Sci. Technol. 48, 12742–12749 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Vu, Q. D. et al. Effect of biogas technology on nutrient flows for small- and medium-scale pig farms in Vietnam. Nutr. Cycl. Agroecosystems 94, 1–13 (2012).

    Google Scholar 

  • 59.

    Schaffner, M., Bader, H.-P. & Scheidegger, R. Modeling the contribution of pig farming to pollution of the Thachin River. Clean Technol. Environ. Policy 12, 407–425 (2009).

    Google Scholar 

  • 60.

    Thu, C. T. T. et al. Manure management practices on biogas and non-biogas pig farms in developing countries—using livestock farms in Vietnam as an example. J. Clean. Prod. 27, 64–71 (2012).

    Google Scholar 

  • 61.

    Huang, W., Qiao, F., Liu, H., Jia, X. & Lohmar, B. From backyard to commercial hog production: does it lead to a better or worse rural environment? China Agric. Econ. Rev. 8, 22–36 (2016).

    Google Scholar 

  • 62.

    Fischer, G. et al. Global Agro-ecological Zones (GAEZ v3. 0)—Model Documentation (IIASA, 2012).

  • 63.

    Nutrient Flows and Associated Environmental Impacts in Livestock Supply Chains. Guidelines for Assessment (Version 1) (FAO, 2018).

  • 64.

    Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    CAS  Google Scholar 

  • 65.

    Peoples, M. B. et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48, 1–17 (2009).

    CAS  Google Scholar 

  • 66.

    Leip, A., Britz, W., Weiss, F. & de Vries, W. Farm, land and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ. Pollut. 159, 3243–3253 (2011).

    CAS  PubMed  Google Scholar 

  • 67.

    Swaney, D. P., Howarth, R. W. & Hong, B. Nitrogen use efficiency and crop production: patterns of regional variation in the United States, 1987–2012. Sci. Total Environ. 635, 498–511 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 68.

    Navarro, J., Bryan, B. A., Marinoni, O., Eady, S. & Halog, A. Mapping agriculture’s impact by combining farm management handbooks, life-cycle assessment and search engine science. Environ. Model. Softw. 80, 54–65 (2016).

    Google Scholar 

  • 69.

    Dentener, F. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993 and 2050 (DAAC, 2006).

  • 70.

    Latham, J., Cumani, R., Rosati, I. & Bloise, M. FAO Global Land Cover (GLC-SHARE) Beta-Release 1.0 Database. 40 (FAO, 2014).

  • 71.

    Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void‐filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21, 983–1008 (2007).

    Google Scholar 

  • 72.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 73.

    National Emission Inventory—Ammonia Emissions from Animal Husbandry Operations, 131 (EPA, 2004).

  • 74.

    Manure storage in Canada in Farm Environmental Management in Canada (Statistics Canada, 2003).

  • 75.

    Bioteau, T., Burton, C., Guiziou, F. & Martinez, J. Qualitative Assessment of Manure Management in Main Livestock Production Systems and a Review of Gaseous Emissions Factors of Manure Throughout EU27 (European Commission, 2009).

  • 76.

    Gupta, P. K. et al. Methane and nitrous oxide emission from bovine manure management practices in India. Environ. Pollut. 146, 219–224 (2007).

    CAS  PubMed  Google Scholar 

  • 77.

    Mink, T., Aldrich, E. L. & Leon, L. A. Anaerobic Biodigester Technology in Methane Capture and Manure Management in Mexico—The History and Current Situation, 110 (The International Renewable Resources Institute of Mexico & Tetra Tech Es, Inc, 2015).

  • 78.

    Dan, T. T. et al. Area-Wide Integration (AWI) of Specialized Crop and Livestock Activities in Vietnam (FAO. 2003).

  • 79.

    Gao, Z. et al. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961–2010. Environ. Res. 135, 111–119 (2014).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism