in

Nitrogen immobilization may reduce invasibility of nutrient enriched plant community invaded by Phragmites australis

  • 1.

    Kowarsch, M. et al. A road map for global environmental assessments. Nat. Clim. Change 7, 379–382, https://doi.org/10.1038/nclimate3307 (2017).

  • 2.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10, 10.1890/1051-0761(2000)010[0689:bicegc]2.0.co;2 (2000).

  • 3.

    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Biosci. 48, 607–615 (1998).

    • Article
    • Google Scholar
  • 4.

    Corbin, J. D. & D’Antonio, C. M. Can Carbon Addition Increase Competitiveness of Native Grasses? A Case Study from California. Restor. Ecol. 12, 36–43, https://doi.org/10.1111/j.1061-2971.2004.00299.x (2004).

    • Article
    • Google Scholar
  • 5.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Sci. 277, 494–499 (1997).

  • 6.

    Bobbink, R. Effects of nutrient enrichment in Dutch chalk grassland. J. Appl. Ecol., 28–41 (1991).

  • 7.

    Maron, J. L. & Connors, P. G. A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105, 302–312 (1996).

  • 8.

    Maron, J. L. & Jeffries, R. L. Restoring enriched grasslands: Effects of mowing on species richness, productivity, and nitrogen retention. Ecol. Appl. 11, 1088–1100, https://doi.org/10.1890/1051-0761(2001)011[1088:regeom]2.0.co;2 (2001).

    • Article
    • Google Scholar
  • 9.

    Mitsch, W. & Gosselink, J. (John Wiley and Sons, New York, NY, USA, 2007).

  • 10.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nat. 387, 253–260 (1997).

  • 11.

    Zedler, J. B. & Kercher, S. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit. Rev. Plant. Sci. 23, 431–452 (2004).

    • Article
    • Google Scholar
  • 12.

    Uddin, M. N., Caridi, D. & Robinson, R. W. Phytotoxic evaluation of Phragmites australis: an investigation of aqueous extracts of different organs. Mar. Freshw. Res. 63, 777–787 (2012).

  • 13.

    Benoit, L. K. & Askins, R. A. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes. Wetl. 19, 194–208, https://doi.org/10.1007/bf03161749 (1999).

    • Article
    • Google Scholar
  • 14.

    Mills, E. L., Strayer, D. L., Scheuerell, M. D. & Carlton, J. T. Exotic species in the Hudson River basin: a history of invasions and introductions. Estuaries 19, 814–823 (1996).

    • Article
    • Google Scholar
  • 15.

    McCormick, M. K., Kettenring, K. M., Baron, H. M. & Whigham, D. F. Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetl. 30, 67–74 (2010).

    • Article
    • Google Scholar
  • 16.

    Uddin, M. N., Robinson, R. W., Buultjens, A., Al Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244, https://doi.org/10.1016/j.jembe.2016.10.016 (2017).

    • Article
    • Google Scholar
  • 17.

    Price, A. L., Fant, J. B. & Larkin, D. J. Ecology of Native vs. Introduced Phragmites australis (Common Reed) in Chicago-Area Wetlands. Wetl. 34, 369–377, https://doi.org/10.1007/s13157-013-0504-z (2014).

    • Article
    • Google Scholar
  • 18.

    Meyerson, L. A., Saltonstall, K., Windham, L., Kiviat, E. & Findlay, S. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manage. 8, 89–103, https://doi.org/10.1023/a:1008432200133 (2000).

  • 19.

    Mozdzer, T. J. & Zieman, J. C. Ecophysiological differences between genetic lineages facilitate the invasion of non‐native Phragmites australis in North American Atlantic coast wetlands. J. Ecol. 98, 451–458 (2010).

    • Article
    • Google Scholar
  • 20.

    Guo, W. Y., Lambertini, C., Li, X. Z., Meyerson, L. A. & Brix, H. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche. Glob. Change Biol. 19, 3406–3422 (2013).

    • Google Scholar
  • 21.

    Pysek, P. et al. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 91, 51–75, https://doi.org/10.23855/preslia.2019.051 (2019).

    • Article
    • Google Scholar
  • 22.

    Quirion, B., Simek, Z., Davalos, A. & Blossey, B. Management of invasive Phragmites australis in the Adirondacks: a cautionary tale about prospects of eradication. Biol. Invasions 20, 59–73, https://doi.org/10.1007/s10530-017-1513-2 (2018).

    • Article
    • Google Scholar
  • 23.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    • Article
    • Google Scholar
  • 24.

    Silliman, B. R., Grosholz, E. & Bertness, M. D. Human impacts on salt marshes: a global perspective. (Univ of California Press, 2009).

  • 25.

    Streever, W. J. Trends in Australian wetland rehabilitation. Wetl. Ecol. Manage. 5, 5–18, https://doi.org/10.1023/a:1008267102602 (1997).

    • Article
    • Google Scholar
  • 26.

    Van der Putten, W. H. Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-back and Progression (1993–1994). Aquat. Bot. 59, 263–275, https://doi.org/10.1016/s0304-3770(97)00060-0 (1997).

    • Article
    • Google Scholar
  • 27.

    Kettenring, K. M. & Mock, K. E. Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biol. Invasions 14, 2489–2504 (2012).

    • Article
    • Google Scholar
  • 28.

    Kristin, S. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. PNAS 99, 2445–2449 (2002).

    • Article
    • Google Scholar
  • 29.

    Kiviat, E. et al. Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biological Invasions, 1–13, https://doi.org/10.1007/s10530-019-02014-9 (2019).

  • 30.

    Walker, L. R., J. Walker & Hobbs, R. J. Linking Restoration and Ecological Succession. Vol. 1976 (Springer, 2007).

  • 31.

    Rohal, C. B., Kettenring, K. M., Sims, K., Hazelton, E. L. G. & Ma, Z. Surveying managers to inform a regionally relevant invasive Phragmites australis control research program. J. Environ. Manag. 206, 807–816, https://doi.org/10.1016/j.jenvman.2017.10.049 (2018).

  • 32.

    Hazelton, E. L., Mozdzer, T. J., Burdick, D. M., Kettenring, K. M. & Whigham, D. F. Phragmites australis management in the United States: 40 years of methods and outcomes. AoB plants 6 (2014).

  • 33.

    Saltonstall, K., Burdick, D., Miller, S. & B., S. Native and Introduced Phragmites: Challenges in Identification, Research, and Management of the Common Reed. National Estuarine Research Reserve Technical Report Series (2005).

  • 34.

    Marks, M., Lapin, B. & Randall, J. Phragmites australis (P. communis): threats, management and monitoring. Nat. Areas J. 14, 285–294 (1994).

    • Google Scholar
  • 35.

    Crawley, M. J. et al. The population biology of invaders. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 314, 711–731 (1986).

  • 36.

    Hobbs, R. J. & Atkins, L. Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. Austral Ecol. 13, 171–179 (1988).

    • Article
    • Google Scholar
  • 37.

    Vallano, D. M., Selmants, P. C. & Zavaleta, E. S. Simulated nitrogen deposition enhances the performance of an exotic grass relative to native serpentine grassland competitors. Plant. Ecol. 213, 1015–1026, https://doi.org/10.1007/s11258-012-0061-1 (2012).

    • Article
    • Google Scholar
  • 38.

    Kettenring, K. M., McCormick, M. K., Baron, H. M. & Whigham, D. F. Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. J. Appl. Ecol. 48, 1305–1313, https://doi.org/10.1111/j.1365-2664.2011.02024.x (2011).

    • Article
    • Google Scholar
  • 39.

    Uddin, M. N. & Robinson, R. W. Can nutrient enrichment influence the invasion of Phragmites australis? Sci. Total. Environ. 613, 1449–1459, https://doi.org/10.1016/j.scitotenv.2017.06.131 (2018).

  • 40.

    Pearson, D. E., Ortega, Y. K., Eren, O. & Hierro, J. L. Community Assembly Theory as a Framework for Biological Invasions. Trends Ecol. Evolution 33, 313–325, https://doi.org/10.1016/j.tree.2018.03.002 (2018).

    • Article
    • Google Scholar
  • 41.

    Bowkett, L. A. & Kirkpatrick, J. B. Ecology and conservation of remnant Melaleuca ericifolia stands in the Tamar Valley, Tasmania. Australian J. Botany 51, 405–413, https://doi.org/10.1071/bt02071 (2003).

    • Article
    • Google Scholar
  • 42.

    Uddin, M. N., Robinson, R. W., Caridi, D. & Al Harun, M. A. Y. Suppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates. Am. J. Botany 101, 479–487, https://doi.org/10.3732/ajb.1400021 (2014).

    • Article
    • Google Scholar
  • 43.

    de Jong, N. H. Woody plant restoration and natural regeneration in wet meadow at Coomonderry Swamp on the south coast of New South Wales. Mar. Freshw. Res. 51, 81–89, https://doi.org/10.1071/mf99037 (2000).

    • Article
    • Google Scholar
  • 44.

    Raulings, E. J. et al. Rehabilitation of Swamp Paperbark (Melaleuca ericifolia) wetlands in south-eastern Australia: effects of hydrology, microtopography, plant age and planting technique on the success of community-based revegetation trials. Wetlands Ecology and Management 15, https://doi.org/10.1007/s11273-006-9022-6 (2007).

  • 45.

    Tilman, D. Resource competition and community structure. (Princeton university press, 1982).

  • 46.

    Liu, L. et al. Nutrient enrichment alters impacts of Hydrocotyle vulgaris invasion on native plant communities. Scientific Reports 6, 39468, https://doi.org/10.1038/srep39468, http://www.nature.com/articles/srep39468#supplementary-information (2016).

  • 47.

    Tilman, E. A., Tilman, D., Crawley, M. J. & Johnston, A. Biological weed control via nutrient competition: potassium limitation of dandelions. Ecol. Appl. 9, 103–111 (1999).

    • Article
    • Google Scholar
  • 48.

    Bertness, M. D., Ewanchuk, P. J. & Silliman, B. R. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl Acad. Sci. 99, 1395–1398 (2002).

  • 49.

    Brooks, M. L. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J. Appl. Ecol. 40, 344–353 (2003).

    • Article
    • Google Scholar
  • 50.

    Brinson, M. M. & Malvárez, A. I. Temperate freshwater wetlands: types, status, and threats. Environ. Conserv. 29, 115–133 (2002).

    • Article
    • Google Scholar
  • 51.

    Kolodziejek, J. Growth and competitive interaction between seedlings of an invasive Rumex confertus and of co-occurring two native Rumex species in relation to nutrient availability. Scientific Reports 9, https://doi.org/10.1038/s41598-019-39947-z (2019).

  • 52.

    Corbin, J. D. & D’Antonio, C. M. Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecol. 85, 1273–1283 (2004).

    • Article
    • Google Scholar
  • 53.

    Prober, S. M., Thiele, K. R., Lunt, I. D. & Koen, T. B. Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J. Appl. Ecol. 42, 1073–1085, https://doi.org/10.1111/j.1365-2664.2005.01095.x (2005).

  • 54.

    Rodgers et al. Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience 58, 426–436 (2008).

  • 55.

    Richardson, D. M. & Pyšek, P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431, https://doi.org/10.1191/0309133306pp490pr (2006).

    • Article
    • Google Scholar
  • 56.

    Zheng, Y.-L. et al. Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecol. Lett. 21, 1211–1220, https://doi.org/10.1111/ele.13090 (2018).

    • Article
    • Google Scholar
  • 57.

    Wavrek, M., Heberling, J. M., Fei, S. & Kalisz, S. Herbaceous invaders in temperate forests: a systematic review of their ecology and proposed mechanisms of invasion. Biol. Invasions 19, 3079–3097, https://doi.org/10.1007/s10530-017-1456-7 (2017).

    • Article
    • Google Scholar
  • 58.

    Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in Microbiology 6, https://doi.org/10.3389/fmicb.2015.00095 (2015).

  • 59.

    Blumenthal, D. M., Jordan, N. R. & Russelle, M. P. Soil carbon addition controls weeds and facilitates prairie restoration. Ecological Applications 13, 605–615, doi:10.1890/1051-0761(2003)013[0605:scacwa]2.0.co;2 (2003).

  • 60.

    Rowe, H. I., Brown, C. S. & Paschke, M. W. The Influence of Soil Inoculum and Nitrogen Availability on Restoration of High-Elevation Steppe Communities Invaded by Bromus tectorum. Restor. Ecol. 17, 686–694, https://doi.org/10.1111/j.1526-100X.2008.00385.x (2009).

    • Article
    • Google Scholar
  • 61.

    Carlisle, E., Myers, S., Raboy, V. & Bloom, A. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Frontiers in Plant Science 3, https://doi.org/10.3389/fpls.2012.00195 (2012).

  • 62.

    Averett, J. M., Klips, R. A., Nave, L. E., Frey, S. D. & Curtis, P. S. Effects of Soil Carbon Amendment on Nitrogen Availability and Plant Growth in an Experimental Tallgrass Prairie Restoration. Restor. Ecol. 12, 568–574, https://doi.org/10.1111/j.1061-2971.2004.00284.x (2004).

    • Article
    • Google Scholar
  • 63.

    Cabrera, M. L., Kissel, D. E. & Vigil, M. F. Nitrogen mineralization from organic residues: Research opportunities. J. Environ. Qual. 34, 75–79, https://doi.org/10.2134/jeq.2005.0075 (2005).

  • 64.

    Alpert, P. Amending invasion with carbon: after fifteen years, a partial success. Rangel. 32, 12–15 (2010).

    • Article
    • Google Scholar
  • 65.

    Packer, J. G., Meyerson, L. A., Skalova, H., Pysek, P. & Kueffer, C. Biological Flora of the British Isles: Phragmites australis. J. Ecol. 105, 1123–1162, https://doi.org/10.1111/1365-2745.12797 (2017).

    • Article
    • Google Scholar
  • 66.

    Hocking, P. J., Finlayson, C. M. & Chick, A. J. The biology of Australian weeds. 12. Phragmites australis (Cav.) Trin. ex Steud. Australian Inst. Agric. Sci. J. 49, 123–132 (1983).

    • Google Scholar
  • 67.

    Srivastava, J., Kalra, S. J. S. & Naraian, R. Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl. Water Sci. 4, 193–202, https://doi.org/10.1007/s13201-013-0142-x (2014).

  • 68.

    Rudrappa, T. et al. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant. Signal. Behav. 4(6), 506–513 (2009).

  • 69.

    Robinson, R. W., Boon, P. I., Sawtell, N., James, E. A. & Cross, R. Effects of environmental conditions on the production of hypocotyl hairs in seedlings of Melaleuca ericifolia (swamp paperbark). Australian J. Botany 56, 564–573 (2008).

    • Article
    • Google Scholar
  • 70.

    Morris, K., Boon, P. I., Raulings, E. J. & White, S. D. Floristic shifts in wetlands: the effects of environmental variables on the interaction between Phragmites australis (Common Reed) and Melaleuca ericifolia (Swamp Paperbark). Mar. Freshw. Res. 59, 187–204 (2008).

    • Article
    • Google Scholar
  • 71.

    Uddin, M. N. & Robinson, R. W. Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient. Sci. Rep. 7, 11007 (2017).

  • 72.

    Relf, M. & New, T. Conservation needs of the Altona skipper butterfly, Hesperilla flavescens flavescens Waterhouse (Lepidoptera: Hesperiidae), near Melbourne, Victoria. J. Insect Conserv. 13, 143–149, https://doi.org/10.1007/s10841-008-9138-5 (2009).

    • Article
    • Google Scholar
  • 73.

    Greet, J. & Rees, P. Slashing may have potential for controlling Phragmites australis in long-inundated parts of a Ramsar-listed wetland. Ecol. Manag. Restor. 16, 233–236, https://doi.org/10.1111/emr.12183 (2015).

  • 74.

    Lane, B., Bezuijen, M., Orscheg, C., Todd, J. & Carr, G. Edithvale–Seaford Wetlands Ramsar Management Plan. Unpublished report for Melbourne Waterways and Drainage Group. Ecology Australia Pty Ltd, Fairfield, Victoria (2000).

  • 75.

    Maynard, D., Kalra, Y. & Crumbaugh, J. Nitrate and exchangeable ammonium nitrogen. Soil sampling and methods of analysis 1 (1993).

  • 76.

    Purcell, L. C. & King, C. A. Total nitrogen determination in plant material by persulfate digestion. Agron. J. 88, 111–113, https://doi.org/10.2134/agronj1996.00021962008800010023x (1996).

  • 77.

    Uddin, M. N., Robinson, R. W. & Caridi, D. Phytotoxicity induced by Phragmites australis: an assessment of phenotypic and physiological parameters involved in germination process and growth of receptor plant. J. Plant. Interact. 9, 338–353, https://doi.org/10.1080/17429145.2013.835879 (2014).

  • 78.

    Zaiontz, C. Real statistics using Excel, http://www.real-statistics.com/[accessed on 10 October 2016] (2014).

  • 79.

    King, R. S., Deluca, W. V., Whigham, D. F. & Marra, P. P. Threshold effects of coastal urbanization onPhragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuaries Coasts 30, 469–481 (2007).

  • 80.

    Green, E. K. Department of Horticultural Science, U. o. M., 305 Alderman Hall, 1970 Folwell Avenue, St Paul, MN 55108, USA, Galatowitsch, S. M. & Department of Horticultural Science, U. o. M., 305 Alderman Hall, 1970 Folwell Avenue, St Paul, MN 55108, USA Effects of Phalaris arundinacea and nitrate‐N addition on the establishment of wetland plant communities. J. Appl. Ecol. 39, 134–144, https://doi.org/10.1046/j.1365-2664.2002.00702.x (2018).

    • Article
    • Google Scholar
  • 81.

    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534 (2000).

    • Article
    • Google Scholar
  • 82.

    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).

    • Article
    • Google Scholar
  • 83.

    Engst, K., Baasch, A. & Bruelheide, H. Predicting the establishment success of introduced target species in grassland restoration by functional traits. Ecol. Evolution 7, 7442–7453, https://doi.org/10.1002/ece3.3268 (2017).

    • Article
    • Google Scholar
  • 84.

    Stylinski, C. D. & Allen, E. B. Lack of native species recovery following severe exotic disturbance in southern Californian shrublands. J. Appl. Ecol. 36, 544–554, https://doi.org/10.1046/j.1365-2664.1999.00423.x (1999).

    • Article
    • Google Scholar
  • 85.

    Perry, L. G., Galatowitsch, S. M. & Rosen, C. J. Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon‐enriched soil. J. Appl. Ecol. 41, 151–162 (2004).

  • 86.

    McLendon, T. & Redente, E. F. Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semiarid sagebrush site. Oecologia 91, 312–317, https://doi.org/10.1007/bf00317618 (1992).

  • 87.

    Kleijn, D., Treier, U. A. & Muller-Scharer, H. The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. N. Phytologist 166, 565–575, https://doi.org/10.1111/j.1469-8137.2005.01321.x (2005).

  • 88.

    Alpert, P. & Maron, J. L. Carbon Addition as a Countermeasure Against Biological Invasion by Plants. Biol. Invasions 2, 33–40, https://doi.org/10.1023/A:1010063611473 (2000).

    • Article
    • Google Scholar
  • 89.

    Moyo, H., Scholes, M. C. & Twine, W. The effects of repeated cutting on coppice response of Terminalia sericea. Trees-Structure Funct. 29, 161–169, https://doi.org/10.1007/s00468-014-1100-4 (2015).

  • 90.

    Druege, U., Zerche, S., Kadner, R. & Ernst, M. Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann. Botany 85, 687–701, https://doi.org/10.1006/anbo.2000.1132 (2000).

  • 91.

    Morghan, K. J. R. & Seastedt, T. R. Effects of Soil Nitrogen Reduction on Nonnative Plants in Restored Grasslands. Restor. Ecol. 7, 51–55, https://doi.org/10.1046/j.1526-100X.1999.07106.x (1999).

    • Article
    • Google Scholar
  • 92.

    Torok, K. et al. Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Appl. Vegetation Sci. 3, 7–14, https://doi.org/10.2307/1478913 (2000).

    • Article
    • Google Scholar
  • 93.

    Zhang, Q. Z. et al. Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain. Plos One 9, https://doi.org/10.1371/journal.pone.0102062 (2014).

  • 94.

    Durenkamp, M., Luo, Y. & Brookes, P. C. Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil. Biol. Biochem. 42, 2026–2029, https://doi.org/10.1016/j.soilbio.2010.07.016 (2010).

  • 95.

    Zavalloni, C. et al. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil. Ecol. 50, 45–51, https://doi.org/10.1016/j.apsoil.2011.07.012 (2011).

    • Article
    • Google Scholar
  • 96.

    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant. Soil. 354, 311–324, https://doi.org/10.1007/s11104-011-1067-5 (2012).

  • 97.

    Ma, L. N., Huang, W. W., Guo, C. Y., Wang, R. Z. & Xiao, C. W. Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability. Plos One 7, https://doi.org/10.1371/journal.pone.0035165 (2012).

  • 98.

    Gebhardt, M., Fehmi, J. S., Rasmussen, C. & Gallery, R. E. Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland. Plant. Soil. 419, 53–70, https://doi.org/10.1007/s11104-017-3327-5 (2017).

  • 99.

    Kulmatiski, A. Changing Soils to Manage Plant Communities: Activated Carbon as a Restoration Tool in Ex-arable Fields. Restor. Ecol. 19, 102–110, https://doi.org/10.1111/j.1526-100X.2009.00632.x (2011).

    • Article
    • Google Scholar
  • 100.

    Wurst, S. & van Beersum, S. The impact of soil organism composition and activated carbon on grass-legume competition. Plant. Soil. 314, 1–9, https://doi.org/10.1007/s11104-008-9618-0 (2009).

  • 101.

    Gu, Y., Wang, P. & Kong, C. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur. J. Soil. Biol. 45, 436–441 (2009).

  • 102.

    Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W. & Gannon, J. E. Soil fungi alter interactions between the invader centaurea maculosa and north american natives. Ecol. 85, 1062–1071, https://doi.org/10.1890/02-0775 (2004).

    • Article
    • Google Scholar
  • 103.

    Kulmatiski, A. & Beard, K. H. Activated carbon as a restoration tool: potential for control of invasive plants in abandoned agricultural fields. Restor. Ecol. 14, 251–257 (2006).

    • Article
    • Google Scholar
  • 104.

    Chapin, F. S., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447, https://doi.org/10.1146/annurev.ecolsys.21.1.423 (1990).

    • Article
    • Google Scholar
  • 105.

    Schaffner, U., Nentwig, W. & Brandle, R. Effect of mowing, rust infection and seed production upon c-reserves and n-reserves and morphology of the perennial veratrum-album l (liliales, melanthiaceae). Botanica Helvetica 105, 17–23 (1995).

    • Google Scholar
  • 106.

    Verhoeven, J. T. A. & Schmitz, M. B. Control of plant-growth by nitrogen and phosphorus in mesotrophic fens. Biogeochemistry 12, 135–148, https://doi.org/10.1007/bf00001811 (1991).

  • 107.

    Morghan, K. J. R. Department of Agronomy and Range Science, O. S. A., University of California, Davis, CA 95616, USA, Seastedt, T. R. & Department of Environmental, P., and Organismic Biology, and Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Campus Box 450, Boulder, CO 80309–0450, U.S.A. Effects of Soil Nitrogen Reduction on Nonnative Plants in Restored Grasslands. Restor. Ecol. 7, 51–55, https://doi.org/10.1046/j.1526-100X.1999.07106.x (1999).

    • Article
    • Google Scholar
  • 108.

    Paschke, M. W., McLendon, T. & Redente, E. F. Nitrogen availability and old-field succession in a shortgrass steppe. Ecosyst. 3, 144–158, https://doi.org/10.1007/s100210000016 (2000).

  • 109.

    Dosskey, M. G. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ. Manag. 28, 577–598, https://doi.org/10.1007/s002670010245 (2001).

  • 110.

    Torok, K. et al. Long-term outcome of nitrogen immobilization to restore endemic sand grassland in Hungary. J. Appl. Ecol. 51, 756–765, https://doi.org/10.1111/1365-2664.12220 (2014).


  • Source: Ecology - nature.com

    What is the future of lighting waste?

    MIT helps first-time entrepreneur build food hospitality company