in

Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining

  • 1.

    Walker TW, Syers JK. The fate of phosphorus during pedogenesis. Geoderma. 1976;15:1–19.

    • Google Scholar
  • 2.

    Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry. 1991;13:87–115.

    • Google Scholar
  • 3.

    Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 2007;10:1135–42.

    • Google Scholar
  • 4.

    Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, et al. Nutrient co-limitation of primary producer communities. Ecol Lett. 2011;14:852–62.

    • Google Scholar
  • 5.

    Vitousek PM, Porder S, Houlton BZ, Chadwick OA. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl. 2010;20:5–15.

    • Google Scholar
  • 6.

    Ågren GI, Wetterstedt JM, Billberger MF. Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. N. Phytol. 2012;194:953–60.

    • Google Scholar
  • 7.

    Elser JJ. Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol. 2012;23:833–8.

    • Google Scholar
  • 8.

    Li Y, Niu S, Yu G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta‐analysis. Glob Change Biol. 2016;22:934–43.

    • Google Scholar
  • 9.

    Peñuelas J, Poulter B, Sardans J, Ciais P, Van Der Velde M, Bopp L, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun. 2013;4:2934.

    • Google Scholar
  • 10.

    Cooke JA, Johnson MS. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev. 2002;10:41–71.

    • Google Scholar
  • 11.

    Li MS. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ. 2006;357:38–53.

    • Google Scholar
  • 12.

    Huang L, Baumgartl T, Mulligan D. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann Bot. 2012;110:223–38.

    • Google Scholar
  • 13.

    Dobson AP, Bradshaw AD, Baker AJM. Hopes for the future: restoration ecology and conservation biology. Science. 1997;277:515–22.

    • Google Scholar
  • 14.

    Nelson KN, Neilson JW, Root RA, Chorover J, Maier RM. Abundance and activity of 16S rRNA, AmoA and NifH bacterial genes during assisted phytostabilization of mine tailings. Int J Phytoremediat. 2015;17:493–502.

    • Google Scholar
  • 15.

    Li Y, Jia Z, Sun Q, Cheng J, Yang Y, Zhan J, et al. Plant-mediated changes in soil N-cycling genes during revegetation of copper mine tailings. Front Environ Sci. 2017;5:79.

    • Google Scholar
  • 16.

    Sun S, Badgley BD. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol Biochem. 2019;135:163–72.

    • Google Scholar
  • 17.

    Amazonas NT, Martinelli LA, de Cássia Piccolo M, Rodrigues RR. Nitrogen dynamics during ecosystem development in tropical forest restoration. For Ecol Manag. 2011;262:1551–7.

    • Google Scholar
  • 18.

    Rodríguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil. 2006;287:15–21.

    • Google Scholar
  • 19.

    Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability. Plant Physiol. 2011;156:989–96.

    • Google Scholar
  • 20.

    Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 2017;8:971.

    • Google Scholar
  • 21.

    George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, et al. Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil. 2018;427:191–208.

    • Google Scholar
  • 22.

    Goldstein AH. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic. 1995;12:185–93.

    • Google Scholar
  • 23.

    Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol. 1995;61:972–8.

    • Google Scholar
  • 24.

    Myrold DD, Zeglin LH, Jansson JK. The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J. 2014;78:3–10.

    • Google Scholar
  • 25.

    Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol. 2016;18:1988–2000.

    • Google Scholar
  • 26.

    Grafe M, Goers M, von Tucher S, Baum C, Zimmer D, Leinweber P, et al. Bacterial potentials for uptake, solubilization and mineralization of extracellular phosphorus in agricultural soils are highly stable under different fertilization regimes. Environ Microbiol Rep. 2018;10:320–7.

    • Google Scholar
  • 27.

    Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, et al. Land-use influences phosphatase gene microdiversity in soils. Environ Microbiol. 2017;19:2740–53.

    • Google Scholar
  • 28.

    Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature. 2011;480:368–71.

    • Google Scholar
  • 29.

    Yang TT, Liu J, Chen WC, Chen X, Shu HY, Jia P, et al. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings. Soil Biol Biochem. 2017;114:52–8.

    • Google Scholar
  • 30.

    JAMES Murphy, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–6.

    • Google Scholar
  • 31.

    Olsen SR, Cole CV, Watanabe FS, Dean LA (eds). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). Washington, D.C., USA: U.S. Department of Agriculture; 1954.

  • 32.

    Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol. 2013;15:2431–44.

    • Google Scholar
  • 33.

    Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 2015;9:1280–94.

    • Google Scholar
  • 34.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:1–11.

    • Google Scholar
  • 35.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    • Google Scholar
  • 36.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    • Google Scholar
  • 37.

    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

    • Google Scholar
  • 38.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    • Google Scholar
  • 39.

    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    • Google Scholar
  • 40.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    • Google Scholar
  • 41.

    Segata N, Bornigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.

    • Google Scholar
  • 42.

    Letunic I, Bork P. Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucl Acids Res. 2011;39:W475–8.

    • Google Scholar
  • 43.

    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.

    • Google Scholar
  • 44.

    Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol. 2010;109:1–12.

    • Google Scholar
  • 45.

    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004;32:1792–7.

    • Google Scholar
  • 46.

    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    • Google Scholar
  • 47.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    • Google Scholar
  • 48.

    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). New Orleans, LA: IEEE; 2010. pp 1–8.

  • 49.

    Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res. 2007;35:3100–8.

    • Google Scholar
  • 50.

    Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, et al. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J. 2019;13:2044–57.

    • Google Scholar
  • 51.

    Oksanen J, Blanchet F, Kindt K, Legendre P, Minchin P, O’Hara R, et al. Vegan: Community Ecology Package. R package version 2.2-1, 2015. http://CRAN.R-project.org/package=vegan.

  • 52.

    Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    • Google Scholar
  • 53.

    Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010;31:2225–36.

    • Google Scholar
  • 54.

    McKenzie RH, Stewart JWB, Dormaar JF, Schaalje GB. Long-term crop rotation and fertilizer effects on phosphorus transformations: II. in a Luvisolic soil. Can J Soil Sci. 1992;72:581–9.

    • Google Scholar
  • 55.

    Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16:472–82.

    • Google Scholar
  • 56.

    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.

    • Google Scholar
  • 57.

    Groth AC, Calos MP. Phage integrases: biology and applications. J Molecul Biol. 2004;335:667–78.

    • Google Scholar
  • 58.

    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AA, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.

    • Google Scholar
  • 59.

    Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, et al. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat Microbiol. 2019;4:1356–67.

    • Google Scholar
  • 60.

    Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat Ecol Evol. 2018;2:499–509.

    • Google Scholar
  • 61.

    Ye ZH, Wong JWC, Wong MH, Baker AJM, Shu WS, Lan CY. Revegetation of Pb/Zn mine tailings, Guangdong Province, China. Restor Ecol. 2000;8:87–92.

    • Google Scholar
  • 62.

    Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ. 2011;409:1009–16.

    • Google Scholar
  • 63.

    Li X, Bond PL, Van Nostrand JD, Zhou J, Huang L. From lithotroph-to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Sci Rep. 2015;5:12978.

    • Google Scholar
  • 64.

    Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.

    • Google Scholar
  • 65.

    Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, et al. Relationship between soil chemical factors and grassland diversity. Plant Soil. 1998;202:69–78.

    • Google Scholar
  • 66.

    Darch T, Blackwell MS, Hawkins JMB, Haygarth PM, Chadwick D. A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: implications for water quality. Cri Rev Environ Sci Technol. 2014;44:2172–202.

    • Google Scholar
  • 67.

    Martiny JB, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.

    • Google Scholar
  • 68.

    Challacombe JF, Eichorst SA, Hauser L, Land M, Xie G, Kuske CR. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076. PLoS ONE. 2011;6:e24882.

    • Google Scholar
  • 69.

    Souza V, Eguiarte LE, Siefert J, Elser JJ. Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol. 2008;6:559–64.

    • Google Scholar
  • 70.

    Wilson MM, Metcalf WW. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Appl Environ Microbiol. 2005;71:290–6.

    • Google Scholar
  • 71.

    Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA. 2010;107:18634–9.

    • Google Scholar
  • 72.

    Luo C, Konstantinidis KT. Phosphorus-related gene content is similar in Prochlorococcus populations from the North Pacific and North Atlantic Oceans. Proc Natl Acad Sci USA. 2011;108:E62–3.

    • Google Scholar

  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean