in

Nutritional benefit of fungal spores for honey bee workers

  • 1.

    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Article  Google Scholar 

  • 2.

    Klein, D. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).

    Article  Google Scholar 

  • 3.

    Southwick, E. E. & Southwick, L. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85, 621–633 (1992).

    Article  Google Scholar 

  • 4.

    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294. https://doi.org/10.1051/apido/2010012 (2010).

    Article  Google Scholar 

  • 5.

    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, e0152685. https://doi.org/10.1371/journal.pone.0152685 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Simone-Finstrom, M. et al. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 6, 32023 (2016).

    ADS  CAS  Article  Google Scholar 

  • 8.

    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838. https://doi.org/10.1038/srep42838 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche A J. Entomol. 2012, 1–9 (2012).

    Article  Google Scholar 

  • 10.

    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect. Sci. 10, 133–141 (2015).

    Article  Google Scholar 

  • 11.

    Shaw, D. E. The incidental collection of fungal spores by bees and the collection of spores in lieu of pollen. Bee World 71, 158–176 (1990).

    Article  Google Scholar 

  • 12.

    Shaw, D. E. Bees and fungi, with special reference to certain plant pathogens. Aust. Plant Pathol. 28, 269–282. https://doi.org/10.1071/ap99044 (1999).

    Article  Google Scholar 

  • 13.

    Parker, R. L. The collection of pollen by the honey bee. Memoir: Cornell University Agricultural experiment Station 98, 1–55 (1926).

  • 14.

    Doull, K. M. An analysis of bee behaviour as it relates to pollination in The Indispensable pollinators (ed Warren L.O.). Report 9th Pollination Conference 12-15 (Hot Springs, Arkansas 1970).

  • 15.

    Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).

    Article  Google Scholar 

  • 16.

    Westerkamp, C. P. Pollen in bee flower relations. Some considerations on melittophily. Botanica. Acta 109, 325–332 (1996).

    Article  Google Scholar 

  • 17.

    Thorp, R. W. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223 (2000).

    Article  Google Scholar 

  • 18.

    Portman, Z. M. & Tepedino, V. J. Convergent evolution of pollen transport mode in two distantly related bee genera (Hymenoptera: Andrenidae and Melittidae). Apidologie 48, 461–472 (2017).

    Article  Google Scholar 

  • 19.

    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183 (1987).

    Article  Google Scholar 

  • 20.

    Renzi, M. T. et al. Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47, 779–788 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Hrassnigg, N. & Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44, 929–939 (1998).

  • 22.

    Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. & Billen, J. The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Hoover, S. E., Higo, H. A. & Winston, M. L. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comput. Physiol. B 176, 55–63 (2006).

    Article  Google Scholar 

  • 24.

    Modro, A. F. H., Silva, I. C., Message, D. & Luz, C. F. P. Saprophytic fungus collection by africanized bees in Brazil. Neotrop. Entomol. 38, 434–436 (2009).

    Article  Google Scholar 

  • 25.

    Gasparoto, M. C. G. et al. Honeybees can spread Colletotrichum acutatum and C. gloeosporioides among citrus plants. Plant Pathol. 66, 777–782. https://doi.org/10.1111/ppa.12625 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Brouwers, E. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 21, 193–198 (1982).

    Article  Google Scholar 

  • 27.

    Pernal, S. F. & Currie, R. W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409. https://doi.org/10.1051/apido:2000130 (2000).

    Article  Google Scholar 

  • 28.

    Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).

    CAS  Article  Google Scholar 

  • 29.

    Page, R. E. Jr. & Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).

    Article  Google Scholar 

  • 30.

    Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595 (1995).

    Article  Google Scholar 

  • 31.

    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Kleinschmidt, G., Kondos, A., Harden, J. & Turner, J. Colony management for eucalypt honey flows. Aust. Beekeeper 75, 261–264 (1974).

    Google Scholar 

  • 33.

    Anke, S., Niemüller, D., Moll, S., Hänsch, R. & Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol. 136, 4037–4047 (2004).

  • 34.

    Boppré, M., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agr. Food. Chem. 53, 594–600 (2005).

    Article  Google Scholar 

  • 35.

    Hartmann, T. & Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores in Topics in Current Chemistry: Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids (ed Vederas J.C. Leeper F.J.) 207–243 (Springer, Berlin 2000).

  • 36.

    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89, 795–804 (2008).

    Article  Google Scholar 

  • 37.

    San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol. 32, 11–16 (1996).

    CAS  Article  Google Scholar 

  • 38.

    Szaniszlo, P., Cooper, B. & Voges, H. S. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia: J Med Vet Mycol 10, 94–102 (1972).

  • 39.

    Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P. & Bossier, P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35, 109–138 (2009).

    CAS  Article  Google Scholar 

  • 40.

    Mazzei, M. et al. Effect of 1, 3–1, 6 β-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 11, e0166297 (2016).

    Article  Google Scholar 

  • 41.

    Stevanovic, J. et al. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Anais da Academia Brasileira de Ciências 90, 219–229 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology (Munksgaard, Copenhagen, 1969).

    Google Scholar 

  • 43.

    Kearns, C. A. & Inouye, D. W. Techniques for pollination biologists. (University Press of Colorado, 1993).

  • 44.

    APSA. Australasian Pollen and Spore Atlas, <https://apsa.anu.edu.au/> (2007).

  • 45.

    Graystock, P. et al. Hygienic food to reduce pathogen risk to bumblebees. J. Invert. Pathol. 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Meeus, I. et al. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J. Invert. Pathol. 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012 (2014).

    Article  Google Scholar 

  • 47.

    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).

    CAS  Article  Google Scholar 

  • 48.

    National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[October 2019]. Available from: https://www.ncbi.nlm.nih.gov/

  • 49.

    Bensch, K. et al. Cladosporium species in indoor environments. Stud. Mycol. 89, 177–301 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Scheuerell, S. J. & Mahaffee, W. F. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006).

    Article  Google Scholar 

  • 51.

    Preston, F. W. The volume of an egg. AOS 91, 132–138. https://doi.org/10.2307/4084667 (1974).

    Article  Google Scholar 

  • 52.

    R Core Team. R: A Language and Environment for Statistical Computing. v. 1.2.1335 (Vienna, Austria; 2019).

  • 53.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).

    Google Scholar 


  • Source: Ecology - nature.com

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores