in

Parasite intensity drives fetal development and sex allocation in a wild ungulate

  • 1.

    Stien, A. et al. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71, 937–945 (2002).

    Article  Google Scholar 

  • 2.

    Budischak, S. A., O’Neal, D., Jolles, A. E. & Ezenwa, V. O. Differential host responses to parasitism shape divergent fitness costs of infection. Funct. Ecol. 32, 324–333 (2018).

    Article  Google Scholar 

  • 3.

    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B 269, 1625–1632 (2002).

    CAS  Article  Google Scholar 

  • 4.

    Festa-Bianchet, M. Numbers of lungworm larvae in feces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Can. J. Zool. 69, 547–554 (1991).

    Article  Google Scholar 

  • 5.

    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).

    Article  Google Scholar 

  • 6.

    Fitze, P. S., Tschirren, B. & Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 73, 216–226 (2004).

    Article  Google Scholar 

  • 7.

    Patterson, J. E. H., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8, e55779 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos Trans. R. Soc. Lond. B Biol. Sci. 363, 1635–1645 (2008).

    PubMed  Article  Google Scholar 

  • 10.

    Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Gluckman, P. D., Hanson, M. A., Morton, S. M. B. & Pinal, C. S. Life-long echoes–a critical analysis of the developmental origins of adult disease model. Neonatology 87, 127–139 (2005).

    Article  Google Scholar 

  • 12.

    Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).

    PubMed  Article  Google Scholar 

  • 13.

    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).

    PubMed  Article  Google Scholar 

  • 14.

    Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Greenwood, P. L. & Bell, A. W. Prenatal nutritional influences on growth and development of ruminants. Recent Adv. Animal Nutr. Aust. 14, 57 (2003).

    Google Scholar 

  • 16.

    Alexander, G. & Williams, D. Heat stress and development of the conceptus in domestic sheep. J. Agric. Sci. 76, 53–72 (1971).

    Article  Google Scholar 

  • 17.

    Holland, M. D. & Odde, K. G. Factors affecting calf birth weight: a review. Theriogenology 38, 769–798 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Reynolds, L. P., Ferrell, C. L., Nienaber, J. A. & Ford, S. P. Effects of chronic environmental heat stress on blood flow and nutrient uptake of the gravid bovine uterus and foetus. J. Agric. Sci. 104, 289–297 (1985).

    Article  Google Scholar 

  • 19.

    Johnson, J. S. et al. The impact of in utero heat stress and nutrient restriction on progeny body composition. J. Therm. Biol. 53, 143–150 (2015).

    PubMed  Article  Google Scholar 

  • 20.

    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A. & Adams, L. G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 185, 1505–1517 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Robbins, C. T. & Robbins, B. L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 114, 101–116 (1979).

    Article  Google Scholar 

  • 24.

    Martin, R. D. & MacLarnon, A. M. Gestation period, neonatal size and maternal investment in placental mammals.pdf. Nature 313, 220–223 (1985).

    ADS  Article  Google Scholar 

  • 25.

    O’Callaghan, D. & Boland, M. P. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants. Anim. Sci. 68, 299–314 (1999).

    Article  Google Scholar 

  • 26.

    Blackwell, A. D. Helminth infection during pregnancy: insights from evolutionary ecology. Int. J. Womens Health 8, 651–661 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 92, 108–134 (2017).

    PubMed  Article  Google Scholar 

  • 28.

    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Silk, J. B. Local Resource Competition and Facultative Adjustment of Sex Ratios in Relation to Competitive Abilities. Am. Nat. 121, 56–66 (1983).

    Article  Google Scholar 

  • 30.

    Ryan, C. P., Anderson, W. G., Gardiner, L. E. & Hare, J. F. Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav. Ecol. 23, 160–167 (2012).

    Article  Google Scholar 

  • 31.

    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. Biol. Sci. 271, 1723–1728 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Schwanz, L. E. & Robert, K. A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav. Ecol. Sociobiol. 68, 1085–1096 (2014).

    Article  Google Scholar 

  • 33.

    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. Biol. Sci. 275, 1761–1765 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health 10, 269 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Flegr, J. & Kaňková, Š. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 141, 104874 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Kanková, S. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 37.

    Kanková, S. et al. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134, 1709–1717 (2007).

    PubMed  Article  Google Scholar 

  • 38.

    Simmons, N. M., Bayer, M. B. & Sinkey, L. O. Demography of Dall’s Sheep in the Mackenzie Mountains Northwest Territories. J. Wildl. Manage 48, 156–162 (1984).

    Article  Google Scholar 

  • 39.

    Aleuy, O. A. et al. Diversity of gastrointestinal helminths in Dall’s sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE 13, e0192825 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Geist, V. Mountain Sheep: A Study in Behavior and Evolution (University of Chicago Press, Chicago, 1971).

    Google Scholar 

  • 41.

    Rachlow, J. L. & Bowyer, R. T. Interannual Variation in Timing and Synchrony of Parturition in Dall’s Sheep. J. Mammal. 72, 487–492 (1991).

    Article  Google Scholar 

  • 42.

    Goodrowe, K. L., Smak, B., Presley, N. & Nlonfort, S. L. Reproductive, behavioral, and endocrine characteristics of the Dall’s Sheep (Ovis dalli). Zoo Biol. 15, 45–54 (1996).

    Article  Google Scholar 

  • 43.

    Bunnell, F. L. & Nichols, L. Natural history of thinhorn sheep. In Mountain sheep of North America (ed. Valdez, R.) 23–77 (University of Arizona Press, Arizona, 1999).

    Google Scholar 

  • 44.

    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 45.

    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).

    PubMed  Google Scholar 

  • 46.

    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).

    PubMed  Article  Google Scholar 

  • 47.

    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).

    Article  Google Scholar 

  • 49.

    Pettorelli, N., Pelletier, F. & von Hardenberg, A. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88(2), 381–390 (2007).

    PubMed  Article  Google Scholar 

  • 50.

    Sanchez, G. PLS Path Modeling with R. (Trowchez Editions, Berkeley, 2013). http://www.gastonsanchez.com/PLSPathModelingwithR.pdf.

  • 51.

    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  • 52.

    Hair, J. F., Ringle, C. M. & Sarstedt, M. Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Plann. 46, 1–12 (2013).

    Article  Google Scholar 

  • 53.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Article  Google Scholar 

  • 54.

    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).

    Article  Google Scholar 

  • 55.

    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2017).

    Article  Google Scholar 

  • 56.

    Lê, S., Josse, J., Husson, F. Facto. & Mine, R. An R Package for multivariate analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v025.i0 (2008).

    Article  Google Scholar 

  • 57.

    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).

    ADS  Article  Google Scholar 

  • 58.

    De Roos, A. M., Galic, N. & Heesterbeek, H. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology 90, 945–960 (2009).

    PubMed  Article  Google Scholar 

  • 59.

    Festa-Bianchet, M. Individual Differences, Parasites, and the Costs of Reproduction for Bighorn Ewes (Ovis canadensis). J. Anim. Ecol. 58, 785–795 (1989).

    Article  Google Scholar 

  • 60.

    Festa-Bianchet, M., Jorgenson, J. T. & Wuhart, W. D. Early weaning in bighorn sheep, Ovis canadensis affects growth of males but not of females. Behav. Ecol. 5, 21–27 (1994).

    Article  Google Scholar 

  • 61.

    Singer, F. J., Williams, E., Miller, M. W. & Zeigenfuss, L. C. Population Growth, Fecundity, and Survivorship in Recovering Populations of Bighorn Sheep. Restor. Ecol. 8, 75–84 (2000).

    Article  Google Scholar 

  • 62.

    Simmons, N. M. Seasonal Ranges of Dall’s Sheep, Mackenzie Mountains Northwest Territories. Arctic 35, 512–518 (1982).

    Article  Google Scholar 

  • 63.

    Neilsen, C. & Neiland, K. Sheep Disease Report, Project Progress Report, Federal Aid in Wildlife Restoration. (1974).

  • 64.

    Kutz, S. J. et al. Chapter 2: parasites in ungulates of Arctic North America and Greenland—a view of contemporary diversity, ecology, and impact in a world under change. In Adv Parasit (ed. Rollinson, D.) 99–252 (Academic Press, Cambridge, 2012).

    Google Scholar 

  • 65.

    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. The effect of Marshallagia marshalli on Serum Gastrin concentrations in experimentally infected lambs. J. Parasitol. 102, 436–439 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. Pathophysiology of Marshallagia marshalli in experimentally infected lambs. Parasitology 140, 1762–1767 (2013).

    PubMed  Article  Google Scholar 

  • 67.

    Simcock, D. C. et al. Hypergastrinaemia, abomasal bacterial population densities and pH in sheep infected with Ostertagia circumcincta. Int. J. Parasitol. 29, 1053–1063 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Jacobs, D., Fox, M., Gibbons, L. & Hermosilla, C. Principles of Veterinary Parasitology (Wiley, Hoboken, 2015).

    Google Scholar 

  • 69.

    Berger, T. Fertilization in ungulates. Anim. Reprod. Sci. 42, 351–360 (1996).

    MathSciNet  Article  Google Scholar 

  • 70.

    Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes. Parasite Immunol. https://doi.org/10.1111/pim.12054 (2013).

    Article  PubMed  Google Scholar 

  • 71.

    Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol. 12, e1001917 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Reimers, E. Growth rate and body size differences in Rangifer, a study of causes and effects. Rangifer 3, 3–15 (1983).

    Article  Google Scholar 

  • 73.

    Sontakke, S. D. Monitoring and controlling ovarian activities in wild ungulates. Theriogenology 109, 31–41 (2018).

    PubMed  Article  Google Scholar 

  • 74.

    Festa-Bianchet, M. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214, 653–661 (1988).

    Article  Google Scholar 

  • 75.

    Feder, C., Martin, J. G. A., Festa-Bianchet, M., Bérubé, C. & Jorgenson, J. Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156, 773–781 (2008).

    ADS  PubMed  Article  Google Scholar 

  • 76.

    Hewison, A. J. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Leimar, O. Life-history analysis of the Trivers and Willard sex-ratio problem. Behav. Ecol. 7, 316–325 (1996).

    Article  Google Scholar 

  • 78.

    Sheldon, B. C. & West, S. A. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54 (2004).

    PubMed  Article  Google Scholar 

  • 79.

    Julliard, R. Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav. Ecol. 11, 421–428 (2000).

    Article  Google Scholar 

  • 80.

    Schindler, S. et al. Sex-specific demography and generalization of the Trivers-Willard theory.PDF. Nature 526, 249–252 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 81.

    Festa-Bianchet, M. Offspring sex ratio studies of mammals: Does publication depend upon the quality of the research or the direction of the results?. Écoscience 3, 42–44 (1996).

    Article  Google Scholar 

  • 82.

    Douhard, M. Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of unambiguous evidence. Bioessays 39(9), 1700043 (2017).

    Article  Google Scholar 

  • 83.

    Larson, M. A., Kimura, K., Michael Kubisch, H. & Michael Roberts, R. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc. Natl. Acad. Sci. U. S. A. 98, 9677–9682 (2001).

  • 84.

    Cameron, E. Z., Lemons, P. R., Bateman, P. W. & Bennett, N. C. Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327 (2008).

    PubMed  Google Scholar 

  • 85.

    Shea-Donohue, T., Qin, B. & Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 39, e12422 (2017).

    Article  Google Scholar 

  • 86.

    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).

    PubMed  Article  Google Scholar 

  • 87.

    Kutz, S. J., Hoberg, E. P., Molnár, P. K., Dobson, A. & Verocai, G. G. A walk on the tundra: Host–parasite interactions in an extreme environment. Int. J. Parasitol. Parasites Wildl. 3, 198–208 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).

    PubMed  Article  Google Scholar 

  • 89.

    Rose, H., Hoar, B., Kutz, S. J. & Morgan, E. R. Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int. J. Parasitol. Parasites Wildl. 3, 209–219 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Morgan, E. R. et al. Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biol. Conserv. 131, 244–254 (2006).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores