in

Physiological costs of chemical defence: repeated reflex bleeding weakens the immune system and postpones reproduction in a ladybird beetle

  • 1.

    Cuénot, L. Sur la saignée réflexe et les moyens défense de quelques insectes. Arch. Zool. Exp. Gen. 4, 655–680 (1896).

    Google Scholar 

  • 2.

    Hollande, C. H. L’autohémorrhée ou le rejet du sang chez les insectes (toxicologie du sang). Archs. Anal. Microsc. 13, 171–318 (1911).

    Google Scholar 

  • 3.

    Bateman, P. W. & Fleming, P. A. There will be blood: autohaemorrhage behaviour as part of the defence repertoire of an insect. Journal of Zoology 278, 342–348, https://doi.org/10.1111/j.1469-7998.2009.00582.x (2009).

    Article  Google Scholar 

  • 4.

    Bugila, A. A. A., Franco, J. C., da Silva, E. B. & Branco, M. Defense Response of Native and Alien Mealybugs (Hemiptera: Pseudococcidae) Against the Solitary Parasitoid Anagyrus sp nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). Journal of Insect Behavior 27, 439–453, https://doi.org/10.1007/s10905-014-9440-x (2014).

    Article  Google Scholar 

  • 5.

    Moore, K. A. & Williams, D. D. Novel Strategies in the Complex Defense Repertoire of a Stonefly (Pteronarcys Dorsata) Nymph. Oikos 57, 49–56, https://doi.org/10.2307/3565735 (1990).

    Article  Google Scholar 

  • 6.

    Drilling, K. & Dettner, K. First insights into the chemical defensive system of the erotylid beetle, Tritoma bipustulata. Chemoecology 20, 243–253, https://doi.org/10.1007/s00049-010-0054-2 (2010).

    CAS  Article  Google Scholar 

  • 7.

    Fu, X. H., Nobuyoshi, O., Meyer-Rochow, V. B., Wang, Y. Y. & Lei, C. L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopterists Bulletin 60, 207–215, https://doi.org/10.1649/892.1 (2006).

    Article  Google Scholar 

  • 8.

    Nicolson, S. W. Water Replenishment Following Reflex Bleeding in the Blister Beetle Decapotoma-Lunata Pallas (Coleoptera, Meloidae). African Entomology 2, 21–23 (1994).

    Google Scholar 

  • 9.

    Sato, S., Kushibuchi, K. & Yasuda, H. Effect of reflex bleeding of a predatory ladybird beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), as a means of avoiding intraguild predation and its cost. Applied Entomology and Zoology 44, 203–206, https://doi.org/10.1303/aez.2009.203 (2009).

    Article  Google Scholar 

  • 10.

    Boevé, J.-L. & Schaffner, U. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104–111, https://doi.org/10.1007/s00442-002-1092-4 (2003).

    ADS  Article  PubMed  Google Scholar 

  • 11.

    Higginson, A. D., Delf, J., Ruxton, G. D. & Speed, M. P. Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology 80, 384–392, https://doi.org/10.1111/j.1365-2656.2010.01786.x (2011).

    Article  PubMed  Google Scholar 

  • 12.

    Sword, G. A. Tasty on the outside, but toxic in the middle: grasshopper regurgitation and host plant-mediated toxicity to a vertebrate predator. Oecologia 128, 416–421, https://doi.org/10.1007/s004420100666 (2001).

    ADS  Article  PubMed  Google Scholar 

  • 13.

    Novgorodova, T. A. Role of social and individual experience in interaction of the meadow ant Formica pratensis (Hymenoptera: Formicidae) with ladybird imagines and hoverfly larvae. Insect Science 22, 440–450, https://doi.org/10.1111/1744-7917.12127 (2015).

    Article  PubMed  Google Scholar 

  • 14.

    Zvereva, E. L. & Kozlov, M. V. The costs and effectiveness of chemical defenses in herbivorous insects: a meta-analysis. Ecological Monographs 86, 107–124, https://doi.org/10.1890/15-0911.1 (2016).

    Article  Google Scholar 

  • 15.

    Eisner, T., Eisner, M. & Siegler, M. V. S. Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. (Harvard University Press, 2005).

  • 16.

    Holloway, G. J., de Jong, P. W., Brakefield, P. M. & de Vos, H. Chemical defence in ladybird beetles (Coccinellidae). 1. Distribution of coccinelline and individual variation in defence in 7-spot ladybirds (Coccinella septempunctata). Chemoecology 2, 7–14 (1991).

    CAS  Article  Google Scholar 

  • 17.

    Karystinou, A., Thomas, A. P. M. & Roy, H. E. Presence of haemocyte-like cells in coccinellid reflex blood. Physiological Entomology 29, 94–96, https://doi.org/10.1111/j.0307-6962.2004.0358.x (2004).

    Article  Google Scholar 

  • 18.

    Knapp, M., Dobes, P., Rericha, M. & Hyrsl, P. Puncture vs. reflex bleeding: Haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. European Journal of Entomology 115, 1–6, https://doi.org/10.14411/eje.2018.001 (2018).

    Article  Google Scholar 

  • 19.

    Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282, https://doi.org/10.1007/s004420050446 (1998).

    ADS  Article  PubMed  Google Scholar 

  • 20.

    Rowell-Rahier, M. & Pasteels, J. M. Economics of Chemical Defense in Chrysomelinae. Journal of Chemical Ecology 12, 1189–1203, https://doi.org/10.1007/bf01639004 (1986).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Holloway, G. J., Dejong, P. W. & Ottenheim, M. The Genetics and Cost of Chemical Defense in the 2-Spot Ladybird (Adalia-Bipunctata L). Evolution 47, 1229–1239, https://doi.org/10.2307/2409988 (1993).

    Article  PubMed  Google Scholar 

  • 22.

    Lee, B. W., Ugine, T. A. & Losey, J. E. An Assessment of the Physiological Costs of Autogenous Defenses in Native and Introduced Lady Beetles. Environmental Entomology 47, 1030–1038, https://doi.org/10.1093/ee/nvy068 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Rericha, M., Dobes, P., Hyrsl, P. & Knapp, M. Ontogeny of protein concentration, haemocyte concentration and antimicrobial activity against Escherichia coli in haemolymph of the invasive harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Physiological Entomology 43, 51–59, https://doi.org/10.1111/phen.12224 (2018).

    CAS  Article  Google Scholar 

  • 24.

    de Jong, P. W., Holloway, G. J., Brakefield, P. M. & de Vos, H. Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (Adalia bipunctata). Chemoecology 2, 15–19 (1991).

    Article  Google Scholar 

  • 25.

    Schmidtberg, H., Roehrich, C., Vogel, H. & Vilcinskas, A. A switch from constitutive chemical defence to inducible innate immune responses in the invasive ladybird Harmonia axyridis. Biology Letters 9, 20130006, https://doi.org/10.1098/rsbl.2013.0006 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Firlej, A., Girard, P.-A., Brehelin, M., Coderre, D. & Boivin, G. Immune Response of Harmonia axyridis (Coleoptera: Coccinellidae) Supports the Enemy Release Hypothesis in North America. Annals of the Entomological Society of America 105, 328–338, https://doi.org/10.1603/an11026 (2012).

    Article  Google Scholar 

  • 27.

    Vilcinskas, A., Mukherjee, K. & Vogel, H. Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proceedings of the Royal Society B-Biological Sciences 280, 20122113, https://doi.org/10.1098/rspb.2012.2113 (2013).

    CAS  Article  PubMed Central  Google Scholar 

  • 28.

    Yang, S. Y., Ruuhola, T. & Rantala, M. J. Impact of starvation on immune defense and other life-history traits of an outbreaking geometrid, Epirrita autumnata: a possible causal trigger for the crash phase of population cycle. Annales Zoologici Fennici 44, 89–96 (2007).

    Google Scholar 

  • 29.

    Boggs, C. L. Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23, 27–37, https://doi.org/10.1111/j.1365-2435.2009.01527.x (2009).

    Article  Google Scholar 

  • 30.

    Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P. & Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour? Journal of Animal Ecology 78, 437–446, https://doi.org/10.1111/j.1365-2656.2008.01499.x (2009).

    Article  PubMed  Google Scholar 

  • 31.

    Simpson, S. J. & Raubenheimer, D. The Central Role of the Hemolymph in the Regulation of Nutrient Intake in Insects. Physiological Entomology 18, 395–403 (1993).

    CAS  Article  Google Scholar 

  • 32.

    Hodek, I., Honěk, A. & van Emden, H. F. Ecology and Behaviour of the Ladybird Beetles (Coccinellidae). 600 (Willey-Blackwell, 2012).

  • 33.

    Knapp, M. Relative Importance of Sex, Pre-Starvation Body Mass and Structural Body Size in the Determination of Exceptional Starvation Resistance of Anchomenus dorsalis (Coleoptera: Carabidae). Plos One 11, e0151459, https://doi.org/10.1371/journal.pone.0151459 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Chown, S. L., Le Lagadec, M. D. & Scholtz, C. H. Partitioning variance in a physiological trait: desiccation resistance in keratin beetles (Coleoptera, Trogidae). Functional Ecology 13, 838–844, https://doi.org/10.1046/j.1365-2435.1999.00373.x (1999).

    Article  Google Scholar 

  • 35.

    Bayoumy, M. H., Osawa, N. & Hatt, S. Fitness costs of reflex bleeding in the ladybird beetle Harmonia axyridis: the role of parental effects. Insect Science in press, https://doi.org/10.1111/1744-7917.12737 (2020).

  • 36.

    Brown, P. M. J. et al. Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. Biocontrol 53, 5–21, https://doi.org/10.1007/s10526-007-9132-y (2008).

    Article  Google Scholar 

  • 37.

    Brown, P. M. J. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56, 623–641, https://doi.org/10.1007/s10526-011-9379-1 (2011).

    Article  Google Scholar 

  • 38.

    Lombaert, E. et al. Bridgehead Effect in the Worldwide Invasion of the Biocontrol Harlequin Ladybird. Plos One 5, e9743, https://doi.org/10.1371/journal.pone.0009743 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Tayeh, A. et al. Biological invasion and biological control select for different life histories. Nature Communications 6, 7268, https://doi.org/10.1038/ncomms8268 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    R Development Core Team. R: A language and environment for statistical computing., (R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, 2018).


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations