in

Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events

  • 1.

    Johnson, P. W. & Sieburth, J. M. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnol. Oceanogr. 24, 928–935 (1979).

    ADS  Article  Google Scholar 

  • 2.

    Waterbury, J. B., Watson, S. W., Guillard, R. L. & Brand, L. E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294 (1979).

    ADS  Article  Google Scholar 

  • 3.

    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).

    Article  Google Scholar 

  • 4.

    Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. l’Institut Oceanogr. Monaco Spec. 19, 457–475 (1999).

    Google Scholar 

  • 5.

    Stal, L. J. & Staal, M. Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat. Microb. Ecol. 18, 165–173 (1999).

    Article  Google Scholar 

  • 6.

    Paczkowska, J. et al. Allochthonous matter: An important factor shaping the phytoplankton community in the Baltic Sea. J. Plankton Res. 39, 23–34 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Gaulke, A. K., Wetz, M. S. & Paerl, H. W. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar. Coast. Shelf Sci. 90, 45–54 (2010).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Olson, R. J., Zettler, E. R. & DuRand, M. D. Phytoplankton analysis using flow cytometry. In Handbook of Methods in Aquatic Microbial Ecology 175–186 (Lewis Publishers, Boca Raton, 1993).

  • 10.

    Li, W. K. W. Cytometric diversity in marine ultraphytoplankton. Limnol. Oceanogr. 42, 874–880 (1997).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Collier, J. L. Flow cytometry and the single cell in phycology. J. Phycol. 36, 628–644 (2000).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 13.

    Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).

    Article  CAS  Google Scholar 

  • 14.

    Albrecht, M., Pröschold, T. & Schumann, R. Identification of cyanobacteria in a eutrophic coastal lagoon on the southern Baltic coast. Front. Microbiol. 8, 923 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).

    Article  Google Scholar 

  • 16.

    Murrell, M. C. & Lores, E. M. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. J. Plankton Res. 26, 371–382 (2004).

    Article  Google Scholar 

  • 17.

    Xia, X., Guo, W., Tan, S. & Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 8, 1254 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Ocean. 44, 1166–1175 (1999).

    Article  Google Scholar 

  • 19.

    Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology, vol 13 (ed. Jones, J. G.) 327–370 (Springer US, New York, 1993).

  • 20.

    Tomas, C. R. Identifying marine phytoplankton (Academic Press, New York, 1997).

    Google Scholar 

  • 21.

    Gobler, C. J., Renaghan, M. J. & Buck, N. J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47, 129–141 (2002).

    ADS  Article  Google Scholar 

  • 22.

    Vaquer, A., Troussellier, M., Courties, C. & Bibent, B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol. Oceanogr. 41, 1821–1828 (1996).

    ADS  Article  Google Scholar 

  • 23.

    Calvo-Diaz, A. & Moran, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).

    Article  Google Scholar 

  • 24.

    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Ocean. 49, 168–179 (2004).

    CAS  Article  Google Scholar 

  • 25.

    O’Kelly, C. J., Sieracki, M. E., Thier, E. C. & Hobson, I. C. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 39, 850–854 (2003).

    Article  Google Scholar 

  • 26.

    Péquin, B., Mohit, V., Poisot, T., Tremblay, R. & Lovejoy, C. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat. Microb. Ecol. 78, 187–200 (2017).

    Article  Google Scholar 

  • 27.

    Bec, B. et al. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63, 29–45 (2011).

    Article  Google Scholar 

  • 28.

    Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–-responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).

    ADS  Article  Google Scholar 

  • 29.

    Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72, 2239–2243 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166, 17–25 (1998).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Peierls, B. L., Hall, N. S. & Paerl, H. W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain north carolina estuaries. Estuar. Coasts 35, 1376–1392 (2012).

    Article  Google Scholar 

  • 32.

    Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Wetz, M. S., Paerl, H. W., Taylor, J. C. & Leonard, J. A. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquat. Microb. Ecol. 63, 133–143 (2011).

    Article  Google Scholar 

  • 34.

    Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77, 3074–3084 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Zwirglmaier, K., Spence, E. D., Zubkov, M. V., Scanlan, D. J. & Mann, N. H. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol. 11, 1767–1776 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Paz-Yepes, J., Brahamsha, B. & Palenik, B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. 110, 12030–12035 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Wall, C., Rodgers, B., Gobler, C. & Peterson, B. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).

    ADS  Article  Google Scholar 

  • 38.

    Hamilton, T. J., Paz-Yepes, J., Morrison, R. A., Palenik, B. & Tresguerres, M. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, cuo020 (2014).

    Article  Google Scholar 

  • 39.

    Bales, J. D. Effects of Hurricane Floyd inland flooding, September–October 1999, on tributaries to Pamlico Sound, North Carolina. Estuaries 26, 1319–1328 (2003).

    Article  Google Scholar 

  • 40.

    Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Osburn, C. L., Rudolph, J. C., Paerl, H. W., Hounshell, A. G. & Van Dam, B. R. Lingering carbon cycle effects of Hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46, 2654–2661 (2019).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Paerl, H. W., Rossignol, K. L., Hall, S. N., Peierls, B. L. & Wetz, M. S. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted neuse river estuary, North Carolina, USA. Estuar. Coasts 33, 485–497 (2010).

    CAS  Article  Google Scholar 

  • 43.

    Six, C., Sherrard, R., Lionard, M., Roy, S. & Campbell, D. A. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 151, 379–390 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).

    CAS  Article  Google Scholar 

  • 45.

    Mohan, A. P., Jyothibabu, R., Jagadeesan, L., Lallu, K. R. & Karnan, C. Summer monsoon onset-induced changes of autotrophic pico-and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ. Monit. Assess. 188, 93 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 46.

    Paerl, H. W. et al. Microbial indicators of aquatic ecosystem change: Current applications to eutrophication studies. In FEMS Microbiology Ecology 46, 233–246 (Elsevier, Amsterdam, 2003).

  • 47.

    NC Weather Forecast Office Newport/Morehead City. Post Tropical Cyclone Report—Hurricane Florence. National Weather Service (2018).

  • 48.

    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Schlitzer, R. Ocean Data View. (2020).

  • 50.

    Mangiafico, S. S. Summary and analysis of extension program evaluation in R, version 1.15. 0. Rutgers Coop. Extension, New Brunswick, NJ https//rcompanion. org/handbook/.[Google Sch. (2016).

  • 51.

    Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244 (1982).

    MATH  Article  Google Scholar 

  • 52.

    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).

  • 53.

    Oksanen, J. et al. Package vegan. R Packag ver 254, (2013).

  • 54.

    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).

    Article  Google Scholar 

  • 55.

    Simpson, G. L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package. (2015).

  • 56.

    Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W. & Osburn, C. L. Use of geospatial, hydrologic, and geochemical modeling to determine the influence of wetland-derived organic matter in coastal waters in response to extreme weather events. Front. Mar. Sci. 7, (2020). https://doi.org/10.3389/fmars.2020.00018

  • 57.

    Ray, R. T., Haas, L. W. & Sieracki, M. E. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52, 273–285 (1989).

    ADS  Article  Google Scholar 

  • 58.

    Marshall, H. G. & Nesius, K. K. Seasonal relationships between phytoplankton composition, abundance, and primary productivity in three tidal rivers of the lower Chesapeake Bay. J. Elisha Mitchell Sci. Soc. 109, 141–151 (1993).

    Google Scholar 

  • 59.

    Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Berry, D. L. et al. Shifts in Cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 107, 12941–12945 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Cabello-Yeves, P. J. et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E2010–E2019 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Marsan, D., Place, A., Fucich, D. & Chen, F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8, 1213 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl. Acad. Sci. U. S. A. 116, 16899–16908 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L. & Joyner, A. R. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: The Neuse and New River estuaries, North Carolina, USA. Estuar. Coasts 37, 31–45 (2014).

    Article  Google Scholar 

  • 68.

    Rae, B. D., Förster, B., Badger, M. R. & Price, G. D. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth. Res. 109, 59–72 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Cabello-Yeves, P. J. et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20, 3757–3771 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).

    Article  Google Scholar 

  • 71.

    Osburn, C. L. et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2, 127 (2016).

    MathSciNet  Article  Google Scholar 

  • 72.

    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 73.

    Anderson, S. R., Diou-Cass, Q. P. & Harvey, E. L. Short-term estimates of phytoplankton growth and mortality in a tidal estuary. Limnol. Oceanogr. 63, 2411–2422 (2018).

    ADS  Article  Google Scholar 

  • 74.

    Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986).

    CAS  Article  Google Scholar 

  • 75.

    Bianchi, T. S. Biogeochemistry of Estuaries (Oxford University Press, Oxford, 2007).

    Google Scholar 

  • 76.

    Coclet, C. et al. Trace metal contamination as a toxic and structuring factor impacting ultraphytoplankton communities in a multicontaminated Mediterranean coastal area. Prog. Oceanogr. 163, 196–213 (2018).

    Article  Google Scholar 

  • 77.

    Delpy, F. et al. Pico- and nanophytoplankton dynamics in two coupled but contrasting coastal bays in the NW Mediterranean Sea (France). Estuar. Coasts 41, 2039–2055 (2018).

    CAS  Article  Google Scholar 

  • 78.

    CDM Smith. City of Raleigh—Neuse River Water Quality Sampling Report. (2014).

  • 79.

    Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Mackey, K. R. M. et al. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front. Microbiol. 8, 1496 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Gong, W. et al. Molecular insights into a dinoflagellate bloom. ISME J. 11, 439–452 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Ning, X., Cloern, J. E. & Cole, B. E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. San Francisco Bay. Limnol. Oceanogr. 45, 695–702 (2000).

    ADS  CAS  Article  Google Scholar 

  • 83.

    Li, W. K. W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Ocean. 39, 169–175 (1994).

    CAS  Article  Google Scholar 

  • 84.

    Jardillier, L., Zubkov, M. V., Pearman, J. & Scanlan, D. J. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4, 1180–1192 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Morán, X. A. G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 49, 267–279 (2007).

    Article  Google Scholar 

  • 86.

    Christaki, U., Vázquez-Domínguez, E., Courties, C. & Lebaron, P. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ. Microbiol. 7, 1200–1210 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A Review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28, 726–749 (2005).

    Article  Google Scholar 

  • 88.

    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43–66 (2005).

    ADS  CAS  Article  Google Scholar 

  • 89.

    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Worden, A. Z. & Not, F. Ecology and diversity of picoeukaryotes. Microb. Ecol. Ocean. 2, 159–205 (2008).

    Article  Google Scholar 

  • 91.

    Paerl, R. W., Bertrand, E. M., Allen, A. E., Palenik, B. & Azam, F. Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015).

    ADS  CAS  Article  Google Scholar 

  • 92.

    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).

    CAS  Article  Google Scholar 

  • 93.

    McKie-Krisberg, Z. M. & Sanders, R. W. Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. ISME J. 8, 1953–1961 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Botebol, H. et al. Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7, 327 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 95.

    Rodríguez, F. et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ. Microbiol. 7, 853–859 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 96.

    Valdes-Weaver, L. M. et al. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnol. Oceanogr. 51, 1410–1420 (2006).

    ADS  Article  Google Scholar 

  • 97.

    Wetz, M. S. & Paerl, H. W. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuar. Coasts 31, 419–429 (2008).

    CAS  Article  Google Scholar 

  • 98.

    Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99.

    Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 100.

    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Brussaard, C. P. D. Viral control of phytoplankton Ppopulations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).

    ADS  CAS  Article  Google Scholar 

  • 103.

    Moore, L. R., Ostrowski, M., Scanlan, D. J., Feren, K. & Sweetsir, T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 (2005).

    Article  Google Scholar 

  • 104.

    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Berg, G. M. B. M., Repeta, D. J. & LaRoche, J. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high—molecular weight dissolved organic nitrogen. Limnol. Oceanogr. 48, 1825–1830 (2003).

    ADS  CAS  Article  Google Scholar 

  • 106.

    Martins, R., Fernandez, N., Beiras, R. & Vasconcelos, V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791–799 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. U. S. A. 108, 4352–4357 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Waterbury, J. B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynth. Picoplankt. 71–120 (1986).

  • 109.

    Easterling, D. R. et al. Precipitation change in the United States. (2017).

  • 110.

    Kossin, J. P. et al. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds. Wuebbles, D. J. et al.) 257–276 (U.S. Global Change Research Program, Washington, DC, 2017).

  • 111.

    Wuebbles, D. et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 95, 571–583 (2014).

    ADS  Article  Google Scholar 

  • 112.

    Kunkel, K. E. et al. North Carolina Climate Science Report. (2020).

  • 113.

    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappé, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Montagna, P. A., Hu, X., Palmer, T. A. & Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 63, 2465–2478 (2018).

    ADS  CAS  Article  Google Scholar 

  • 115.

    Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).

    CAS  Article  Google Scholar 

  • 116.

    Marshall, H. G. Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va. J. Sci. 53, (2002).

  • 117.

    Buitenhuis, E. T. et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4, 37–46 (2012).

    ADS  Article  Google Scholar 

  • 118.

    Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).

    ADS  CAS  Google Scholar 

  • 119.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS  Article  Google Scholar 

  • 120.

    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110, 9824–9829 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 122.

    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).

    Article  Google Scholar 

  • 123.

    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents