in

Potential utility of reflectance spectroscopy in understanding the paleoecology and depositional history of different fossils

  • 1.

    Kortüm, G. Reflectance Spectroscopy: Principles, Methods, Applications (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  • 2.

    Hunt, G. R., Salisbury, J. W. & Lenhoff, C. J. Visible and near infrared spectra of minerals and rocks. VI. Additional silicates. Modern Geol. 4, 85–106 (1973).

    ADS  CAS  Google Scholar 

  • 3.

    Johnson, P. E., Smith, M. O., Taylor-George, S. & Adams, J. B. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res. Solid Earth 88, 3557–3561 (1983).

    Article  Google Scholar 

  • 4.

    Clark, R. N. & Lucey, P. G. Spectral properties of ice-particulate mixtures and implications for remote sensing: 1. Intimate mixtures. J. Geophys. Res. Solid Earth 89, 6341–6348 (1984).

    CAS  Article  Google Scholar 

  • 5.

    Clark, R. N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sensing 3, 2–2 (1999).

    CAS  Google Scholar 

  • 6.

    Cloutis, E. A. Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. Int. J. Remote Sensing 17, 2215–2242 (1996).

    ADS  Article  Google Scholar 

  • 7.

    Clark, R. N., King, T. V., Klejwa, M., Swayze, G. A. & Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 95, 12653–12680 (1990).

    Article  Google Scholar 

  • 8.

    Hunt, J. M. & Turner, D. S. Determination of mineral constituents of rocks by infrared spectroscopy. Anal. Chem. 25, 1169–1174 (1953).

    CAS  Article  Google Scholar 

  • 9.

    Soderblom, L. A. The composition and mineralogy of the martian surface from spectroscopic observations: 0.3 pm to 50 pm. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 557–593 (Univ. Arizona Press, Tucson, Arizona, 1992).

    Google Scholar 

  • 10.

    Bell, J. F. III. & Crisp, D. Groundbased imaging spectroscopy of Mars in the near-infrared: Preliminary results. Icarus 104, 2–19 (1993).

    ADS  Article  Google Scholar 

  • 11.

    Sabins, F. F. Remote sensing for mineral exploration. Ore Geol. Rev. 14, 157–183 (1999).

    Article  Google Scholar 

  • 12.

    Crosta, A. P., Sabine, C. & Taranik, J. V. Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sens. Environ. 65, 309–319 (1998).

    ADS  Article  Google Scholar 

  • 13.

    Guha, A. et al. Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli group of rocks, Rajasthan, India. Ore Geol. Rev. 108, 73–87 (2019).

    Article  Google Scholar 

  • 14.

    Guha, A., Ghosh, B., Kumar, K. V. & Chaudhury, S. Implementation of reflection spectroscopy based new ASTER indices and principal components to delineate chromitite and associated ultramafic–mafic complex in parts of Dharwar Craton, India. Adv. Space Res. 56, 1453–1468 (2015).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Guha, A. et al. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 21, 184–194 (2013).

    ADS  Article  Google Scholar 

  • 16.

    Green, R. O. et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. Planets 116, E00G19. https://doi.org/10.1029/2011JE003797 (2011).

    Article  Google Scholar 

  • 17.

    van der Meer, F. D. et al. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 14, 112–128 (2012).

    Article  Google Scholar 

  • 18.

    Cloutis, E. A. et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184, 121–157 (2006).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Malakhov, D. V., Dyke, G. J. & King, C. Remote sensing applied to paleontology: Exploration of Upper Cretaceous sediments in Kazakhstan for potential fossil sites. Palaeontol. Electron. 12, 1935–3952 (2009).

    Google Scholar 

  • 20.

    Wills, S., Choiniere, J. N. & Barrett, P. M. Predictive modelling of fossil-bearing locality distributions in the Elliot Formation (Upper Triassic-Lower Jurassic), South Africa, using a combined multivariate and spatial statistical analyses of present-day environmental data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 489, 186–197 (2018).

    Article  Google Scholar 

  • 21.

    Clark, R. N. & Roush, T. L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 89, 6329–6340 (1984).

    CAS  Article  Google Scholar 

  • 22.

    Ramsey, J., Gazis, P., Roush, T., Spirtes, P. & Glymour, C. Automated remote sensing with near infrared reflectance spectra: Carbonate recognition. Data Min. Knowl. Disc. 6, 277–293 (2002).

    MathSciNet  Article  Google Scholar 

  • 23.

    Mulder, V. L., de Bruin, S., Schaepman, M. E. & Mayr, T. R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 162, 1–19 (2011).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Anemone, R. L., Conroy, G. C. & Emerson, C. W. GIS and paleoanthropology: Incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution. Am. J. Phys. Anthropol. 146, 19–46 (2011).

    PubMed  Article  Google Scholar 

  • 25.

    Haley, B. A., Klinkhammer, G. P. & Mix, A. C. Revisiting the rare earth elements in foraminiferal tests. Earth Planet. Sci. Lett. 239, 79–97 (2005).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Pena, L. D. et al. Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping. Geochem. Geophys. Geosyst. 9(7), Q07012. https://doi.org/10.1029/2008GC002018 (2008).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Ries, J. B. Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–2849 (2010).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Todd, R. & Blackmon, P. Calcite and aragonite in foraminifera. J. Paleontol. 30, 217–219 (1956).

    Google Scholar 

  • 29.

    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).

    ADS  Article  Google Scholar 

  • 30.

    Armstrong, H. & Brasier, M. Microfossils (Wiley, New York, 2013).

    Google Scholar 

  • 31.

    Gaffey, S. J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 μm): Anhydrous carbonate minerals. J. Geophys. Res. Solid Earth 92, 1429–1440 (1987).

    CAS  Article  Google Scholar 

  • 32.

    Gaffey, S. J. Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 μm): Applications in carbonate petrology. Geology 13, 270–273 (1985).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Rossel, R. A. V., Bui, E. N., De Caritat, P. & McKenzie, N. J. Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra. J. Geophys. Res. 115, F04031. https://doi.org/10.1029/2009JF001645 (2010).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Longhi, I., Sgavetti, M., Chiari, R. & Mazzoli, C. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4–2.5 μm interval: A tool for hyperspectral data interpretation. Int. J. Remote Sensing 22, 3763–3782 (2001).

    ADS  Article  Google Scholar 

  • 35.

    Boudaugher-Fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, London, 2018).

    Google Scholar 

  • 36.

    Clarkson, E. N. K. Invertebrate Palaeontology and Evolution (Wiley, New York, 2009).

    Google Scholar 

  • 37.

    Prazeres, M., Roberts, T. E. & Pandolfi, J. M. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts. Sci. Rep. 7, 45227 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Zachos, J. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    BouDagher-Fadel, M. K. Biostratigraphic and Geological Significance of Planktonic Foraminifera (UCL Press, London, 2015).

    Google Scholar 

  • 41.

    Brett, C. E. & Baird, G. C. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1, 207–227 (1986).

    ADS  Article  Google Scholar 

  • 42.

    Biswas, S. K. Tertiary stratigraphy of Kutch. J. Palaeontol. Society India 37, 1–29 (1992).

    Google Scholar 

  • 43.

    Banerjee, S., Khanolkar, S. & Saraswati, P. K. Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodin. Acta 30, 119–136 (2018).

    Article  Google Scholar 

  • 44.

    Srivastava, V. K. & Singh, B. P. Depositional environments and sources for the middle Eocene Fulra Limestone Formation, Kachchh Basin, western India: Evidences from facies analysis, mineralogy, and geochemistry. Geol. J. 54, 62–82 (2019).

    CAS  Article  Google Scholar 

  • 45.

    Chaudhuri, A., Banerjee, S. & Le Pera, E. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution. J. Palaeogeogr. 7, 2 (2018).

    Article  Google Scholar 

  • 46.

    Biswas, S. K. Mesozoic and tertiary stratigraphy of Kutch*(Kachchh)—A review. in Conference GSI 1–24 (2016).

  • 47.

    Srivastava, H., Bhaumik, A. K., Tiwari, D., Mohanty, S. P. & Patil, D. J. Characterization of organic carbon in black shales of the Kachchh basin, Gujarat, India. J. Earth Syst. Sci. 127, 93 (2018).

    ADS  Article  CAS  Google Scholar 

  • 48.

    Rao, G. N. Sedimentation, stratigraphy, and petroleum potential of Krishna–Godavari basin, east coast of India. AAPG Bull. 85, 1623–1643 (2001).

    CAS  Google Scholar 

  • 49.

    Mazumdar, A. et al. Geochemical characterization of the Krishna–Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance. Mar. Pet. Geol. 60, 18–33 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Torrent, J. & Barrón, V. Diffuse reflectance spectroscopy of iron oxides. Encyclopedia Surface Colloid Sci. 1, 1438–1446 (2002).

    Google Scholar 

  • 51.

    Clark, R. N. et al.USGS digital spectral library splib06a. Data Series 231. (US Geological Survey, 2007). https://doi.org/10.3133/ds231.

  • 52.

    Small, C. et al. Spectroscopy of sediments in the Ganges–Brahmaputra delta: Spectral effects of moisture, grain size and lithology. Remote Sens. Environ. 113, 342–361 (2009).

    ADS  Article  Google Scholar 

  • 53.

    Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480 (2013).

    ADS  Article  Google Scholar 

  • 54.

    Bao, H., Koch, P. L. & Hepple, R. P. Hematite and calcite coatings on fossil vertebrates. J. Sediment. Res. 68, 727–738 (1998).

    ADS  Article  Google Scholar 

  • 55.

    Borrelli, C., Panieri, G., Dahl, T. M. & Neufeld, K. Novel biomineralization strategy in calcareous foraminifera. Sci. Rep. 8, 10201 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Welton, J. E. SEM Petrology Atlas (American Association of Petroleum Geologists, Tulsa, 1984). https://doi.org/10.1306/Mth4442.

    Google Scholar 

  • 57.

    Boyle, E. A., Berry, J. N., Erez, J. & Tishler, C. Sulfur in foraminifera shells, a new paleoceanographic proxy for carbonate ion in seawater. in AGU Fall Meeting Abstracts (2002).

  • 58.

    de Nooijer, L. J. et al. Copper incorporation in foraminiferal calcite: Results from culturing experiments. Biogeosci. Discuss. 4, 961–991 (2007).

    ADS  Article  Google Scholar 

  • 59.

    Geider, R. J. & La Roche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth. Res. 39, 275–301 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    van Hulten, M. M. P. et al. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises. J. Mar. Syst. 126, 3–23 (2013).

    Article  Google Scholar 

  • 61.

    Boström, K., Kraemer, T. & Gartner, S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem. Geol. 11, 123–148 (1973).

    ADS  Article  Google Scholar 

  • 62.

    Immenhauser, A., Schoene, B. R., Hoffmann, R. & Niedermayr, A. Mollusc and brachiopod skeletal hard parts: intricate archives of their marine environment. Sedimentology 63, 1–59 (2016).

    CAS  Article  Google Scholar 

  • 63.

    Frankel, R. B. Iron biominerals: an overview. in Iron Biominerals (Frankel, R. B., Blakemore, R. P.) 1–6 (Springer, Boston, MA, 1991).

    Google Scholar 

  • 64.

    Jenkins, S. R. et al. Regional scale differences in the determinism of grazing effects in the rocky intertidal. Mar. Ecol. Prog. Ser. 287, 77–86 (2005).

    ADS  Article  Google Scholar 

  • 65.

    Smoothey, A. F. Habitat-associations of turban snails on intertidal and subtidal rocky reefs. PLoS ONE 8, e61257 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Van der Meer, F. D. & De Jong, S. M. Imaging Spectrometry: Basic Principles and Prospective Applications Vol. 4 (Springer Science & Business Media, New York, 2011).

    Google Scholar 

  • 67.

    Khanolkar, S., Saraswati, P. K. & Rogers, K. Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India. Geodin. Acta 29, 181–193 (2017).

    Article  Google Scholar 

  • 68.

    Sen, G. et al. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planetary Sci. Lett. 277, 101–111 (2009).

    ADS  CAS  Article  Google Scholar 

  • 69.

    Gilbert, P. U. P. A. et al. Biomineralization by particle attachment in early animals. PNAS 116, 17659–17665 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Gaffey, S. J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns); calcite, aragonite, and dolomite. Am. Mineral. 71, 151–162 (1986).

    CAS  Google Scholar 

  • 71.

    Carli, C. & Sgavetti, M. Spectral characteristics of rocks: Effects of composition and texture and implications for the interpretation of planet surface compositions. Icarus 211, 1034–1048 (2011).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Guha, A. et al. Spectroscopic study of rocks of Hutti-Maski schist belt, Karnataka. J. Geol. Soc. India 79, 335–344 (2012).

    CAS  Article  Google Scholar 

  • 73.

    Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M. & Fox, N. Progress in field spectroscopy. Remote Sens. Environ. 113, S92–S109 (2009).

    ADS  Article  Google Scholar 

  • 74.

    Bish, D. L. & Post, J. E. Modern Powder Diffraction Vol. 20 (Walter de Gruyter GmbH & Co KG, Washington, 2018).

    Google Scholar 

  • 75.

    Al-Jaroudi, S. S., Ul-Hamid, A., Mohammed, A.-R.I. & Saner, S. Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 175, 115–121 (2007).

    CAS  Article  Google Scholar 

  • 76.

    Pownceby, M. I., MacRae, C. M. & Wilson, N. C. Mineral characterisation by EPMA mapping. Miner. Eng. 20, 444–451 (2007).

    CAS  Article  Google Scholar 

  • 77.

    Reed, S. J. B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge University Press, Cambridge, 2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization