in

Predation risk constrains herbivores’ adaptive capacity to warming

  • 1.

    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66, 807–812 (2016).

    • Article
    • Google Scholar
  • 2.

    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

  • 3.

    Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).

    • Article
    • Google Scholar
  • 4.

    Pacifici, M., Visconti, P. & Rondinini, C. A framework for the identification of hotspots of climate change risk for mammals. Glob. Change Biol. 24, 1626–1636 (2018).

    • Article
    • Google Scholar
  • 5.

    Thuiller, W. et al. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).

    • Article
    • Google Scholar
  • 6.

    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline? Science 341, 504–508 (2013).

  • 7.

    Harris, G., Thirgood, S. J., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endang. Species Res. 7, 55–76 (2009).

    • Article
    • Google Scholar
  • 8.

    Pekor, A. et al. Fencing Africa’s protected areas: costs, benefits, and management issues. Biol. Conserv. 229, 67–75 (2019).

    • Article
    • Google Scholar
  • 9.

    Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl Acad. Sci. USA 114, 7635–7640 (2017).

  • 10.

    Engelbrecht, F. et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 10, 085004 (2015).

    • Article
    • Google Scholar
  • 11.

    Hetem, R. S., Fuller, A., Maloney, S. K. & Mitchell, D. Responses of large mammals to climate change. Temperature 1, 115–127 (2014).

    • Article
    • Google Scholar
  • 12.

    Fuller, A., Mitchell, D., Maloney, S. K. & Hetem, R. S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change Responses 3, 10 (2016).

    • Article
    • Google Scholar
  • 13.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

  • 14.

    Hetem, R. S. et al. Activity re-assignment and microclimate selection of free-living Arabian oryx: responses that could minimise the effects of climate change on homeostasis? Zoology 115, 411–416 (2012).

    • Article
    • Google Scholar
  • 15.

    Huey, R. B. & Tewksbury, J. J. Can behavior douse the fire of climate warming? Proc. Natl Acad. Sci. USA 106, 3647–3648 (2009).

  • 16.

    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    • Article
    • Google Scholar
  • 17.

    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).

    • Article
    • Google Scholar
  • 18.

    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).

    • Article
    • Google Scholar
  • 19.

    Milling, C. R., Rachlow, J. L., Johnson, T. R., Forbey, J. S. & Shipley, L. A. Seasonal variation in behavioral thermoregulation and predator avoidance in a small mammal. Behav. Ecol. 28, 1236–1247 (2017).

    • Article
    • Google Scholar
  • 20.

    Tambling, C. J. et al. Temporal shifts in activity of prey following large predator reintroductions. Behav. Ecol. Sociobiol. 69, 1153–1161 (2015).

    • Article
    • Google Scholar
  • 21.

    Veldhuis, M. P. et al. Large herbivore assemblages in a changing climate: incorporating water dependence and thermoregulation. Ecol. Lett. 22, 1536–1546 (2019).

  • 22.

    Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444 (2011).

    • Article
    • Google Scholar
  • 23.

    Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator-prey system. Nature 425, 288–290 (2003).

  • 24.

    Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

  • 25.

    McCafferty, D. J. et al. Estimating metabolic heat loss in birds and mammals by combining infrared thermography with biophysical modelling. Comp. Biochem. Physiol. A 158, 337–345 (2011).

  • 26.

    Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8, 1–16 (2013).

    • Article
    • Google Scholar
  • 27.

    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Phil. Trans. R. Soc. B 372, 20160248 (2017).

  • 28.

    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).

    • Article
    • Google Scholar
  • 29.

    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).

  • 30.

    Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322 (2005).

    • Article
    • Google Scholar
  • 31.

    Tambling, C. J. et al. Spatial and temporal changes in group dynamics and range use enable anti-predator responses in African buffalo. Ecology 93, 1297–1304 (2012).

    • Article
    • Google Scholar
  • 32.

    Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).

    • Article
    • Google Scholar
  • 33.

    Kinahan, A. A., Pimm, S. L. & van Aarde, R. J. Ambient temperature as a determinant of landscape use in the savanna elephant, Loxodonta africana. J. Therm. Biol. 32, 47–58 (2007).

    • Article
    • Google Scholar
  • 34.

    le Roux, E., Kerley, G. I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).

    • Article
    • Google Scholar
  • 35.

    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).

  • 36.

    Bonnot, N. C. et al. Sitka black-tailed deer (Odocoileus hemionus sitkensis) adjust habitat selection and activity rhythm to the absence of predators. Can. J. Zool. 94, 385–394 (2016).

    • Article
    • Google Scholar
  • 37.

    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science (80-) 360, 1232 LP–1235 (2018).

  • 38.

    Miller, J. R. B., Pitman, R. T., Mann, G. K. H., Fuller, A. K. & Balme, G. A. Lions and leopards coexist without spatial, temporal or demographic effects of interspecific competition. J. Anim. Ecol. 87, 1709–1726 (2018).

    • Article
    • Google Scholar
  • 39.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

  • 40.

    ArcGIS Desktop: Release 10.5 (ESRI, 2015).

  • 41.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 42.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 43.

    Bivand, R. & Lewin-Koh, N. maptools: Tools for handling spatial objects. R package version 0.9-5 (2019).

  • 44.

    Kingdon, J. et al. Mammals of Africa (Bloomsbury, 2013).

  • 45.

    Rowcliffe, M. activity: Animal activity statistics. R package version 1.2 (2019).

  • 46.

    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).

    • Article
    • Google Scholar
  • 47.

    Hofmeester, T. R. et al. Framing pictures: a conceptual framework to identify and correct for biases in detection probability of camera traps enabling multi-species comparison. Ecol. Evol. 9, 2320–2336 (2019).

    • Article
    • Google Scholar
  • 48.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning helps map global ocean communities

    Lighting the way to better battery technology