in

Predicted climate change will increase the truffle cultivation potential in central Europe

  • 1.

    Diez, J. et al. Altitudinal upwards shifts in fungal fruiting in the Alps. Proc. R. Soc. B 287, 20192348. https://doi.org/10.1098/rspb.2019.2348 (2020).

    Article  PubMed  Google Scholar 

  • 2.

    Gange, A. C. et al. Trait-dependent distributional shifts in fruiting of common British fungi. Ecography 41, 51–61. https://doi.org/10.1111/ecog.03233 (2018).

    Article  Google Scholar 

  • 3.

    Boddy, L. et al. Climate variation effects on fungal fruiting. Fungal Ecol. 10, 20–33. https://doi.org/10.1016/j.funeco.2013.10.006 (2014).

    Article  Google Scholar 

  • 4.

    Andrew, C. et al. Open-source data reveal how collections-based fungal diversity is sensitive to global change. Appl. Plant Sci. 7, e01227. https://doi.org/10.1002/aps3.1227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Marx, D. H., Marrs, L. F. & Cordell, C. E. Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, and horticulture. Dendrobiology 47, 27–40 (2002).

    Google Scholar 

  • 6.

    Parmesan, C. & Yohe, G. A. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Fordham, D. A. et al. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Glob. Chang. Biol. 18, 1357–1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x (2012).

    ADS  Article  Google Scholar 

  • 8.

    Harrison, P., Berry, P. M., Butt, N. & New, M. Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environ. Sci. Policy 9, 116–128. https://doi.org/10.1016/j.envsci.2005.11.003 (2006).

    Article  Google Scholar 

  • 9.

    Guo, Y. et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 7, 46221. https://doi.org/10.1038/srep46221 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539. https://doi.org/10.1890/11-1930.1 (2012).

    Article  PubMed  Google Scholar 

  • 11.

    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314. https://doi.org/10.1111/ele.12410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Chambers, D., Périé, C., Casajus, N. & de Blois, S. Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables. For. Ecol. Manag. 291, 20–29. https://doi.org/10.1016/j.foreco.2012.10.046 (2013).

    Article  Google Scholar 

  • 13.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article  Google Scholar 

  • 14.

    Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. Ny. Acad. Sci. 1297, 8–28. https://doi.org/10.1111/nyas.12264 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 15.

    Berch, S. M. & Bonito, G. Cultivation in Mediterranean species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza 24, 473–479; https://doi.org/10.1007/s00572-014-0562-y (2014).

  • 16.

    Păcurar, H. et al. Identification of Soils Factors Influence in the Distributions of Tuber aestivum in Transylvanian Subcarpathian Hills, Romania. Not. Bot. Horti. Afrobio. 47, 478–486; https://doi.org/10.15835/nbha47111378 (2019).

  • 17.

    Rellini, I., Pavarino, M., Scopesi, C. & Zotti, M. Physical land suitability map for Tuber magnatum Pico in Piana Crixia municipality territory (Liguria-Italy). J. Maps 7, 353–362. https://doi.org/10.4113/jom.2011.1180 (2012).

    Article  Google Scholar 

  • 18.

    Serrano-Notivoli, R., Martín-Santafé, M., Sánchez, S. & Barriuso, J. J. Cultivation potentiality of black truffle in Zaragoza province (Northeast Spain). J. Maps 12, 994–998. https://doi.org/10.1080/17445647.2015.1113392 (2012).

    Article  Google Scholar 

  • 19.

    Trappe, J. M. & Claridge, A. W. The hidden life of truffles. Sci. Am. 302, 78–84. https://doi.org/10.1038/scientificamerican0410-78 (2010).

    Article  PubMed  Google Scholar 

  • 20.

    Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224. https://doi.org/10.1007/s00253-013-4956-0 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Stobbe, U. et al. Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecol. 5, 591–599. https://doi.org/10.1016/j.funeco.2012.02.001 (2012).

    Article  Google Scholar 

  • 22.

    Delmas, J. Tuber spp. in The biology and cultivation of edible mushrooms (eds. Chang, S. T. & Hayes, W. A.) 645–681 (Academic Press, 1978).

  • 23.

    Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: a global reality. Forest Syst. 23, 317–328. https://doi.org/10.5424/fs/2014232-04771 (2014).

    Article  Google Scholar 

  • 24.

    Thomas, P. & Büntgen, U. First harvest of Périgord black truffle in the UK as a result of climate change. Clim. Res. 74, 67–70. https://doi.org/10.3354/cr01494 (2017).

    Article  Google Scholar 

  • 25.

    Büntgen, U. et al. Truffles on the move. Front. Ecol. Environ. 17, 200–202. https://doi.org/10.1002/fee.2033 (2019).

    Article  Google Scholar 

  • 26.

    Büntgen, U. et al. Drought-induced decline in Mediterranean truffle harvest. Nat. Clim. Chang. 2, 827–829. https://doi.org/10.1038/nclimate1733 (2012).

    ADS  Article  Google Scholar 

  • 27.

    Thomas, P. & Büntgen, U. A risk assessment of Europe’s black truffle sector under predicted climate change. Sci. Total Environ. 655, 27–34. https://doi.org/10.1016/j.scitotenv.2018.11.252 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Bonet, J. A. et al. Cultivation Methods of the Black Truffle, the Most Profitable Mediterranean Non-Wood Forest Product; A State of the Art Review. in Modelling, Valuing and Managing Mediterranean Forest Ecosystems for Non-Timber Goods and Services (eds. Palahí, M., Birot, Y., Bravo, F., & Gorriz, E.) 57–71 (European Forest Institute, 2009).

  • 29.

    Bonet, J. A., Fisher, C. R. & Colinas, C. Cultivation of black truffle to promote reforestation and land-use stability. Agron. Sustain. Dev. 26, 69–76. https://doi.org/10.1051/agro:2005059 (2006).

    Article  Google Scholar 

  • 30.

    Büntgen, U., Latorre, J., Egli, S. & Martínez-Peña, F. Socio-economic, scientific, and political benefits of mycotourism. Ecosphere 8, e01870. https://doi.org/10.1002/ecs2.1870 (2017).

    Article  Google Scholar 

  • 31.

    Chevalier, G. & Frochot, H. Ecology and possibility of culture in Europe of the Burgundy truffle (Tuber uncinatum Chatin). Agric. Ecosyst. Environ. 28, 71–73. https://doi.org/10.1016/0167-8809(90)90016-7 (1989).

    Article  Google Scholar 

  • 32.

    Chevalier, G. The Truffle of Europe (Tuber aestivum): geographic limits, ecology and possibility of cultivation. Österr. Z. Pilzk. 19, 249–259 (2010).

    Google Scholar 

  • 33.

    Chevalier, G. Europe, a continent with high potential for the cultivation of the Burgundy truffle (Tuber aestivum/uncinatum). Acta Mycol. 47, 127–132 (2012).

    Article  Google Scholar 

  • 34.

    Chytrý, M. Flora and Vegetation of the Czech Republic, Plant and Vegetation 14. (Springer, 2017).

  • 35.

    Rivas-Martínez, S. Bioclimatic & Biogeographic Maps of Europe. (University of León, 2004).

  • 36.

    Trnka, M. et al. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 35, 3733–3747. https://doi.org/10.1002/joc.4242 (2015).

    Article  Google Scholar 

  • 37.

    Ji, D. et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model. Dev. 7, 2039–2064. https://doi.org/10.5194/gmd-7-2039-2014 (2014).

    ADS  Article  Google Scholar 

  • 38.

    Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121. https://doi.org/10.1007/s00382-011-1259-y (2013).

    Article  Google Scholar 

  • 39.

    Martin, G. M. et al. The HadGEM2 family of met office unified model climate configurations. Geosci. Model Dev. 4, 723–757. https://doi.org/10.5194/gmd-4-723-2011 (2011).

    ADS  Article  Google Scholar 

  • 40.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165. https://doi.org/10.1007/s00382-012-1636-1 (2013).

    Article  Google Scholar 

  • 41.

    Yukimoto, S. et al. A new global climate model of the meteorological research institute: MRI-CGCM3. J. Meteorol. Soc. Jpn. 90A, 23–64 (2012).

    Article  Google Scholar 

  • 42.

    Dubrovský, M., Trnka, M., Holman, I. P., Svobodová, E. & Harrison, P. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators. Clim. Change 128, 169–186. https://doi.org/10.1007/s10584-014-1297-7 (2015).

    ADS  Article  Google Scholar 

  • 43.

    Hay, L. E., Wilby, R. L. & Leavesley, G. H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36, 387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x (2007).

    Article  Google Scholar 

  • 44.

    Plíva, K. Typologický systém ÚHUL. (Forest Management Institute, 1971).

  • 45.

    Novotný, I. Metodika mapování a aktualizace bonitovaných půdně ekologických jednotek. (Research Institute for Soil and Water Conservation, 2013).

  • 46.

    ESRI. ArcGIS Pro: Release 2.3.0. (Environmental Systems Research Institute, 2019).

  • 47.

    ArcData Praha. ArcČR 500, Version 3.3. (ArcData Praha, 2016).

  • 48.

    Malczewski, J. GIS and multicriteria decision analysis. (John Wiley, 1999).

  • 49.

    Jaillard, B. et al. Soil Characteristics of Tuber melanosporum Habitat. in True Truffle (Tuber spp.) in the World (eds. Zambonelli, A., Iotti, M. & Murat, C.) 169–190 (Springer International Publishing, 2016).

  • 50.

    Büntgen, U. et al. New insights into the complex relationship between weight and maturity of Burgundy Truffles (Tuber aestivum). PLoS ONE 12, e0170375. https://doi.org/10.1371/journal.pone.0170375 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Garcia-Barreda, S., Camarero, J. J., Vicente-Serrano, S. M. & Serrano-Notivoli, R. Variability and trends of black truffle production in Spain (1970–2017): Linkages to climate, host growth, and human factors. Agric. For. Meteorol. 287, 107951. https://doi.org/10.1016/j.agrformet.2020.107951 (2020).

    ADS  Article  Google Scholar 

  • 52.

    Le Tacon, F. et al. Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48 years. Mycorrhiza 24(Suppl 1), S115–S125. https://doi.org/10.1007/s00572-014-0568-5 (2014).

    Article  PubMed  Google Scholar 

  • 53.

    Václavík, T., Kanaskie, A., Hansen, E. M., Ohmann, J. L. & Meentemeyer, R. K. Predicting potential and actual distribution of sudden oak death in Oregon: Prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 1026–1035. https://doi.org/10.1016/j.foreco.2010.06.026 (2010).

    Article  Google Scholar 

  • 54.

    Streiblová, E., Gryndlerová, H., Valda, S. & Gryndler, M. Tuber aestivum: hypogeous fungus neglected in the Czech Republic: a review. Czech Mycol. 61, 163–173 (2010).

    Article  Google Scholar 

  • 55.

    Gryndler, M. et al. Detection of summer truffle (Tuber aestivum Vittad) in ectomycorrhizae and soil using specific primers. FEMS Microbiol. Lett. 318, 84–91. https://doi.org/10.1111/j.1574-6968.2011.02243.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Gryndler, M. et al. Truffle biogeography: a case study revealing ecological niche separation of different Tuber species. Ecol. Evol. 7, 4275–4288. https://doi.org/10.1002/ece3.3017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Sánchez, S., Ágreda, T., Martín, M., de Miguel, A. M. & Barriuso, J. Persistence and detection of black truffle ectomycorrhizas in plantations: comparison between two field detection methods. Mycorrhiza 24, 39–46. https://doi.org/10.1007/s00572-014-0560-0 (2014).

    Article  Google Scholar 

  • 58.

    Hilszczańska, D., Sierota, Z. & Palenzona, M. New Tuber species found in Poland. Mycorrhiza 18, 223–226. https://doi.org/10.1007/s00572-008-0175-4 (2008).

    Article  PubMed  Google Scholar 

  • 59.

    Trnka, M. et al. Expected changes in agroclimatic conditions in Central Europe. Clim. Change 108, 261–289. https://doi.org/10.1007/s10584-011-0025-9 (2011).

    ADS  Article  Google Scholar 

  • 60.

    Büntgen, U. et al. Black truffle winter production depends on Mediterranean summer precipitation. Environ. Res. Lett. 14, 074004. https://doi.org/10.1088/1748-9326/ab1880 (2019).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Le Tacon, F., Delmas, J., Gleyze, R. & Bouchard, D. Influence du regime hydrique du sol et de la fertilisation sur la frutification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le sud-est de la France. Acta Oecol-Oec. Appl. 3, 291–306 (1982).

  • 62.

    Trnka, M. et al. Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a Czech case study. Clim. Res. 70, 231–249. https://doi.org/10.3354/cr01421 (2016).

    Article  Google Scholar 

  • 63.

    European Environment Agency. Climate change adaptation in the agriculture sector in Europe. (European Environment Agency, 2019).

  • 64.

    NCA CR. Species database of nature protection. (Nature Conservation Agency of the Czech Republic, 2019).

  • 65.

    San-Miguel-Ayanz, J. European Atlas of Forest Tree Species (Publication Office of the European Union, 2016).


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes