in

Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia

  • 1.

    Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    • Article
    • Google Scholar
  • 2.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecology letters 8, 993–1009 (2005).

    • Article
    • Google Scholar
  • 3.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93, 145–159 (1959).

    • Article
    • Google Scholar
  • 4.

    Chaudhary, P. & Bawa, K. S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biology Letters, rsbl20110269 (2011).

  • 5.

    Solomon, S. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Vol. 4 (Cambridge University Press, 2007).

  • 6.

    Shrestha, A. B., Wake, C. P., Dibb, J. E. & Mayewski, P. A. Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology 20, 317–327 (2000).

  • 7.

    Xu, J. et al. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology 23, 520–530 (2009).

  • 8.

    Salick, J., Ghimire, S. K., Fang, Z., Dema, S. & Konchar, K. M. Himalayan alpine vegetation, climate change and mitigation. Journal of Ethnobiology 34, 276–293 (2014).

    • Article
    • Google Scholar
  • 9.

    Aryal, A., Brunton, D. & Raubenheimer, D. Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theoretical and applied climatology 115, 517–529 (2014).

  • 10.

    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecology letters 12, 1040–1049 (2009).

  • 11.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    • Article
    • Google Scholar
  • 12.

    Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Global change biology 22, 1548–1560 (2016).

  • 13.

    Bhattacharjee, A. et al. The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. Climate 5, 80 (2017).

    • Article
    • Google Scholar
  • 14.

    Mainali, K. P. et al. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global change biology 21, 4464–4480 (2015).

  • 15.

    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and conservation 27, 2425–2441 (2018).

    • Article
    • Google Scholar
  • 16.

    Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Global change biology 24, 5281–5291 (2018).

  • 17.

    Singh, S. P., Singh, V. & Skutsch, M. Rapid warming in the Himalayas: Ecosystem responses and development options. Climate and development 2, 221–232 (2010).

    • Article
    • Google Scholar
  • 18.

    Wang, W., Xiang, Y., Gao, Y., Lu, A. & Yao, T. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrological Processes 29, 859–874 (2015).

  • 19.

    Rignot, E. et al. The Copenhagen diagnosis, 2009: updating the world on the latest climate science (2011).

  • 20.

    IPCC. Global Warming of 1.5 °C. 26 (Intergovernmental Panel on Climate Change, Switzerland, 2018).

  • 21.

    Mohammadi, S., Ebrahimi, E., Moghadam, M. S. & Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics 52, 7–13 (2019).

    • Article
    • Google Scholar
  • 22.

    Moat, J., Gole, T. W. & Davis, A. P. Least Concern to Endangered: Applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global change biology 25, 390–403 (2019).

  • 23.

    Ostrowski, S., Rahmani, H., Ali, J. M., Ali, R. & Zahler, P. Musk deer Moschus cupreus persist in the eastern forests of Afghanistan. Oryx 50, 323–328 (2016).

    • Article
    • Google Scholar
  • 24.

    Zhou, Y., Meng, X., Feng, J. & Yang, Q. Review of the distribution, status and conservation of musk deer in China. Folia Zoologica 53, 129–140 (2004).

    • Google Scholar
  • 25.

    Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World. Vol. 2 320–336 (Lynx edicions 2011).

  • 26.

    Green, M. J. The distribution, status and conservation of the Himalayan musk deer Moschus chrysogaster. Biological conservation 35, 347–375 (1986).

    • Article
    • Google Scholar
  • 27.

    Homes, V. No Licence to Kill: The Population and Harvest of Musk Deer and Trade in Musk in the Russian Federation and Mongolia. (Traffic Europe, Brussels, Belgium, 2004).

  • 28.

    Shrestha, B. B. & Moe, S. R. Plant diversity and composition associated with Himalayan musk deer latrine sites. Zoology and Ecology 25, 295–304, https://doi.org/10.1080/21658005.2015.1069498 (2015).

    • Article
    • Google Scholar
  • 29.

    Shrestha, B. B. & Meng, X. Spring habitat preference, association and threats of Himalayan musk deer (Moschus leucogaster) in Gaurishankar Conservation Area, Nepal. International Journal of Conservation Science 5 (2014).

  • 30.

    Singh, P. et al. Ecological correlates of Himalayan musk deer. Ecology and Evolution, 1–15 (2018).

  • 31.

    Timmins, R. J. & Duckworth, J. W. Moschus leucogaster. The IUCN Red List of Threatened Species 2015: e.T13901A61977764., http://www.iucnredlist.org/details/13901/0 (2015).

  • 32.

    Timmins, R. J. & Duckworth, J. W. Moschus cupreus. The IUCN Red List of Threatened Species 2015: e.T13901A61977764. http://www.iucnredlist.org/details/13901/0. (2015).

  • 33.

    Isaac, R., Shakti, S., Hardeep, M. & Isaac, M. In Селевые потоки: катастрофы, риск, прогноз, защита. 115–122.

  • 34.

    Salick, J., Fang, Z. & Hart, R. Rapid changes in eastern Himalayan alpine flora with climate change. American journal of botany 106, 520–530 (2019).

  • 35.

    Singh, P. B., Khatiwada, J. R., Saud, P. & Zhigang, J. mtDNA analysis confirms the endangered kashmir musk deer extends its range to Nepal. Scientific reports 5 (2019).

  • 36.

    Groves, C. P. & Grubb, P. Ungulate taxonomy. (The John Hopkins University Press, 2011).

  • 37.

    Liu, Z. & Groves, C. Taxonomic diversity and colour diversity: rethinking the taxonomy of recent musk deer (Moschus, Moschidae, Ruminantia). Gazella 41, 73–97 (2014).

    • Google Scholar
  • 38.

    Guo, K., Li, F., Zhang, Q. & Chen, S. Complete mitochondrial genome of the Himalayan Musk Deer, Moschus leucogaster, with phylogenetic implication. Conservation Genetics Resources, 1–4 (2018).

  • 39.

    Shrestha, B., Khatiwada, J. & Thanet, D. mtDNA confirms the presence of Moschus leucogaster (Ruminantia, Moschidae) in Gaurishankar Conservation Area, Nepal. Miscel· lània Zoològica 17, 209–218 (2018).

    • Google Scholar
  • 40.

    Lamsal, P., Kumar, L., Aryal, A. & Atreya, K. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics 44, 101–108 (2018).

    • Article
    • Google Scholar
  • 41.

    Harris, R. The IUCN Red List of Threatened Species 2016: e.T13895A61977139., http://iucnredlist.org/ (2016).

  • 42.

    Green, M. J. Scent marking in the Himalayan musk deer (Moschus chrysogaster). Journal of Zoology 1, 721–737 (1987).

    • Article
    • Google Scholar
  • 43.

    Dawadi, B., Liang, E., Tian, L., Devkota, L. P. & Yao, T. Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the central Himalayas. Quaternary International 283, 72–77 (2013).

  • 44.

    Gaire, N. P. et al. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia 42, 21–30 (2017).

    • Article
    • Google Scholar
  • 45.

    Sohar, K., Altman, J., Lehečková, E. & Doležal, J. Growth–climate relationships of Himalayan conifers along elevational and latitudinal gradients. International Journal of Climatology 37, 2593–2605 (2017).

  • 46.

    Tiwari, A., Fan, Z.-X., Jump, A. S., Li, S.-F. & Zhou, Z.-K. Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 41, 34–43 (2017).

    • Article
    • Google Scholar
  • 47.

    Bräuning, A. Tree-ring studies in the Dolpo-Himalya (western Nepal). Tree Rings in. Archaeology, Climatology and Ecology 2, 8–12 (2004).

    • Google Scholar
  • 48.

    Sigdel, M. & Ikeda, M. Seasonal contrast in precipitation mechanisms over Nepal deduced from relationship with the large-scale climate patterns. Nepal Journal of Science and Technology 13, 115–123 (2013).

    • Article
    • Google Scholar
  • 49.

    Shekhar, M. et al. Winter precipitation climatology over Western Himalaya: Altitude and Range wise study. J. Ind. Geophys. Union (March 2017) 21, 148–152 (2017).

    • Google Scholar
  • 50.

    Borgaonkar, H., Sikder, A. & Ram, S. High altitude forest sensitivity to the recent warming: a tree-ring analysis of conifers from Western Himalaya, India. Quaternary International 236, 158–166 (2011).

  • 51.

    Yadav, R. R., Park, W. K., Singh, J. & Dubey, B. Do the western Himalayas defy global warming? Geophysical Research Letters 31 (2004).

  • 52.

    Singh, J., Yadav, R. R. & Wilmking, M. A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Climate Dynamics 33, 1149 (2009).

  • 53.

    Panthi, S., Bräuning, A., Zhou, Z.-K. & Fan, Z.-X. Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Global and Planetary Change 157, 26–34 (2017).

  • 54.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 150 (IPCC, Geneva, Switzerland, 2014).

  • 55.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224 (2002).

  • 56.

    Trenberth, K. E. Changes in precipitation with climate change. Climate Research 47, 123–138 (2011).

  • 57.

    Duan, K., Yao, T. & Thompson, L. G. Response of monsoon precipitation in the Himalayas to global warming. Journal of Geophysical Research: Atmospheres 111 (2006).

  • 58.

    Khadka, K. K., Kannan, R., Ilyas, O., Abbas, F.-I. & James, D. A. Where are they? Where will they be? In pursuit of current and future whereabouts of endangered Himalayan musk deer. Mammalian Biology-Zeitschrift für Säugetierkunde 85, 30–36 (2017).

    • Article
    • Google Scholar
  • 59.

    Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8, e57103 (2013).

  • 60.

    Guo, Y. et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Scientific reports 7, 46221 (2017).

  • 61.

    Li, J. et al. Climate refugia of snow leopards in High Asia. Biological Conservation 203, 188–196 (2016).

    • Article
    • Google Scholar
  • 62.

    Kandel, K. et al. Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: Red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region. Biological Conservation 181, 150–161 (2015).

    • Article
    • Google Scholar
  • 63.

    Shrestha, U. B. & Bawa, K. S. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS one 9, e106405 (2014).

  • 64.

    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecology and evolution 8, 10542–10554 (2018).

  • 65.

    Pandit, M., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation 16, 153–163 (2007).

    • Article
    • Google Scholar
  • 66.

    Grumbine, R. E. & Pandit, M. K. Threats from India’s Himalaya dams. Science 339, 36–37 (2013).

  • 67.

    Pan, T. et al. Species delimitation in the genus Moschus (Ruminantia: Moschidae) and its high-plateau origin. PloS one 10, e0134183 (2015).

  • 68.

    Chung, S.-L. et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394, 769–773 (1998).

  • 69.

    Zhang, D., Fengquan, L. & Jianmin, B. Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environmental Geology 39, 1352–1358 (2000).

    • Article
    • Google Scholar
  • 70.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052 (2009).

  • 71.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

  • 72.

    Fukada, K. The Great Himalayas. Himalayas, Harry N. Abrahams, Inc.; New York (1971).

  • 73.

    Panthi, J. et al. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 3, 210–226 (2015).

    • Article
    • Google Scholar
  • 74.

    Bhambri, R., Bolch, T., Chaujar, R. K. & Kulshreshtha, S. C. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology 57, 543–556 (2011).

  • 75.

    Wang, L. et al. Conservation priorities of forest ecosystems with evaluations of connectivity and future threats: Implications in the Eastern Himalaya of China. Biological Conservation 195, 128–135 (2016).

    • Article
    • Google Scholar
  • 76.

    Khan, S. M., Page, S., Ahmad, H., Shaheen, H. & Harper, D. Vegetation dynamics in the Western Himalayas, diversity indices and climate change. Sci., Tech. and Dev. 31, 232–243 (2012).

    • Google Scholar
  • 77.

    Chettri, N., Sharma, E. & Zomer, R. Changing paradigm and post 2010 targets: Challenges and opportunities for biodiversity conservation in the Hindu Kush Himalayas. Tropical Ecology 53, 245–259 (2012).

    • Google Scholar
  • 78.

    CEPF. Ecosystem Profile, Eastern Himalayas Region. WWF-US, Asia Program (2005).

  • 79.

    Meng, X., Cody, N., Gong, B. & Xiang, L. Stable fighting strategies to maintain social ranks in captive male Alpine musk deer (Moschus sifanicus). Animal Science Journal 83, 617–622, https://doi.org/10.1111/j.1740-0929.2011.01007.x (2012).

  • 80.

    Meng, Q., Li, H. & Meng, X. Behavior pattern as the indicator of reproductive success of Alpine musk deer. Iranian Journal of Veterinary Research 13, 276–281 (2012).

    • Google Scholar
  • 81.

    Singh, P. B., Shrestha, B. B., Thapa, A., Saud, P. & Jiang, Z. Selection of latrine sites by Himalayan musk deer (Moschus leucogaster) in Neshyang Valley, Annapurna Conservation Area, Nepal. Journal of Applied Animal Research 46, 920–926 (2018).

    • Article
    • Google Scholar
  • 82.

    Sheng, H. & Ohtaishi, N. Deer of China: Biology and Management. (Elsevier Science Publishers, Amsterdam. 1993).

  • 83.

    Green, M. J. B. Aspects of the ecology of the Himalayan musk deer, University of Cambridge, Cambridge,UK (1985).

  • 84.

    Kattel, B. Ecology of the Himalayan musk deer in Sagarmatha National Park, Nepal, Colorado State University, USA, (1993).

  • 85.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978, https://doi.org/10.1002/joc.1276 (2005).

  • 86.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    • Article
    • Google Scholar
  • 87.

    Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography 42, 521–534 (2019).

    • Article
    • Google Scholar
  • 88.

    Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5, 1198–1205 (2014).

    • Article
    • Google Scholar
  • 89.

    Xiaoge, X., Li, Z., Jie, Z., Tongwen, W. & Yongjie, F. Climate change projections over East Asia with BCC_CSM1. 1 climate model under RCP scenarios. 気象集誌. 第 2 輯 91, 413–429 (2013).

    • Google Scholar
  • 90.

    Wu, T. et al. An overview of BCC climate system model development and application for climate change studies. Journal of Meteorological Research 28, 34–56 (2014).

    • Google Scholar
  • 91.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    • Article
    • Google Scholar
  • 92.

    Mothes, C. C., Stroud, J. T., Clements, S. L. & Searcy, C. A. Evaluating ecological niche model accuracy in predicting biotic invasions using South Florida’s exotic lizard community. Journal of biogeography 46, 432–441 (2019).

    • Article
    • Google Scholar
  • 93.

    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. International Journal of Wildland Fire 27, 756–769 (2018).

    • Article
    • Google Scholar
  • 94.

    Renner, I. W. & Warton, D. I. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69, 274–281 (2013).

  • 95.

    Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecological applications 19, 181–197 (2009).

  • 96.

    Kramer‐Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19, 1366–1379 (2013).

    • Article
    • Google Scholar
  • 97.

    R Core Team. R: A language and environment for statistical computing., https://www.r-project.org/ (2016).


  • Source: Ecology - nature.com

    Powering the planet

    What is the future of lighting waste?