Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123(1), 111–119 (2014).
Wilder, S. M., Raubenheimer, D. & Simpson, S. J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30(1), 108–115 (2016).
Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32(5), 1203–1213 (2018).
Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14(7), 625–634 (2011).
Coon, C. A., Nichols, B. C., McDonald, Z. & Stoner, D. C. Effects of land-use change and prey abundance on the body condition of an obligate carnivore at the wildland-urban interface. Landsc. Urban Plan. 192, 103648 (2019).
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
Barnett, C. A., Suzuki, T. N., Sakaluk, S. K. & Thompson, C. F. Mass-based condition measures and their relationship with fitness: in what condition is condition?. J. Zool. 296(1), 1–5 (2015).
Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. A. Physiol. 325(9), 588–597 (2016).
Stevenson, R. & Woods, W. A. Condition indices for conservation: new uses for evolving tools. Int. Comp. Biol. 46(6), 1169–1190 (2006).
Homyack, J. A. Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl. Res. 37(4), 332–342 (2010).
Hayes, J. P. & Shonkwiler, J. S. Morphometric indicators of body condition, worthwhile or wishful thinking? In Body Composition Analysis of Animals, a Handbook of Non-destructive Methods (ed. Spearman, J. R.) 8–38 (Cambridge Univ. Press, Cambridge, 2001).
Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24(6), 1323–1332 (2010).
Larivière, S. et al. Influence of food shortage during the summer on body composition and reproductive hormones in the red fox, Vulpes vulpes. Can. J. Zool. 79(3), 471–477 (2001).
Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23(1), 57–69 (2009).
Risco, D. et al. Biometrical measurements as efficient indicators to assess wild boar body condition. Ecol. Indic. 88, 43–50 (2018).
Gosler, A. G., Greenwood, J. J. & Perrins, C. Predation risk and the cost of being fat. Nature 377(6550), 621 (1995).
Higginson, A. D., McNamara, J. M. & Houston, A. I. The starvation-predation trade-off predicts trends in body size, muscularity, and adiposity between and within taxa. Am. Nat. 179(3), 338–350 (2012).
Houston, A. I., Stephens, P. A., Boyd, I. L., Harding, K. C. & McNamara, J. M. Capital or income breeding? A theoretical model of female reproductive strategies. Behav. Ecol. 18(1), 241–250 (2006).
Pond, C. M. & Ramsay, M. A. Allometry of the distribution of adipose tissue in Carnivora. Can. J. Zool. 70(2), 342–347 (1992).
Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37(6), 701–709 (2015).
Mangipane, L. S. et al. Dietary plasticity in a nutrient-rich system does not influence brown bear (Ursus arctos) body condition or denning. Polar Biol. 41(4), 763–772 (2018).
Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100(2), 126 (1985).
Graham, A. L. et al. Fitness consequences of immune responses, strengthening the empirical framework for ecoimmunology. Func. Ecol. 25(1), 5–17 (2011).
Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity, mediation by physiological trade-offs. Phil. Trans. R. Soc. B 363(1490), 321–339 (2007).
Kindermann, C., Narayan, E. J. & Hero, J. M. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species?. Comp. Biochem. Physiol. A. 203, 220–226 (2017).
Whiteman, J. P. et al. Heightened immune system function in polar bears using terrestrial habitats. Physiol. Bioch. Zool 92(1), 1–11 (2019).
Garrow, J. S. & Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 9(2), 147–153 (1984).
Fulton, T. W. Rate of growth of sea fishes (ed. Fulton, T. W.) (Neill & Company, Edinburgh, 1902).
Nash, R. D., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor: setting the record straight. Fisheries 31(5), 236–238 (2006).
Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20, 201 (1951).
Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness, a comparison of body condition indices. Oikos 77(1), 61–67 (1996).
Jolicoeur, P. Linear regressions in fishery research, some comments. J. Fish. B. Can. 32(8), 1491–1494 (1975).
Green, A. J. Mass/length residuals: measures of body condition or generators of spurious results?. Ecol. 82(5), 1473–1483 (2001).
Lindsjö, J., Fahlman, Å & Törnqvist, E. Animal welfare from mouse to moose – implementing the principles of the 3Rs in wildlife research. J. Wildl. Dis. 52(2S), S65–S77 (2016).
Guyton, A. C., Hall, J. E. Textbook of medical physiology (ed. Guyton, A. C., Hall, J. E) 11th ed. (Elsevier Saunders, Amsterdam, 2006).
McCue, M. D. Starvation physiology, reviewing the different strategies animals use to survive a common challenge. Comp. Bioch. Physiol. A 156, 1–18 (2010).
Russell, K., Lobley, G. E. & Millward, D. J. Whole-body protein turnover of a carnivore, Felis silvestris catus. Br. J. Nutr. 89(1), 29–37 (2003).
Delgiudice, G. D., Seal, U. S. & Mech, L. D. Effects of feeding and fasting on wolf blood and urine characteristics. J. Wildl. Manage. 51, 1 (1987).
Domingo-Roura, X., Newman, C., Calafell, F. & Macdonald, D. W. Blood biochemistry reflects seasonal nutritional and reproductive constraints in the Eurasian badger (Meles meles). Phys. Biochem. Zool. 74, 450–460 (2001).
Karasov, W. H., del Rio, C. M. Physiological ecology, how animals process energy, nutrients, and toxins (ed. Karasov, W. H., del Rio, C. M.) 1–739 (Princeton University Press, Princeton, 2007).
Schmidt, W., Maassen, N., Trost, F. & Böning, D. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur. J. Appl. Physiol. Occ. Physiol. 57(4), 490–498 (1988).
Brocherie, F. et al. Association of hematological variables with team-sport specific fitness performance. PLoS ONE 10(12), e0144446 (2015).
McGowan, C. Clinical pathology in the racing horse, the role of clinical pathology in assessing fitness and performance in the racehorse. Vet. Clin. N. Am. 24(2), 405–421 (2008).
Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81(2), 259–291 (2006).
Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12(1), 214–225 (2013).
Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B 279(1739), 2891–2898 (2012).
Lobo, A., Marti, J. I. & Gimenez-Cassina, C. C. Regional scale hierarchical classification of temporal series of AVHRR vegetation index. Int. J. Rem. Sens. 18(15), 3167–3193 (1997).
Alcaraz, D., Paruelo, J. & Cabello, J. Identification of current ecosystem functional types in the Iberian Peninsula. Glob. Ecol. Biogeogr. 15(2), 200–212 (2006).
Oftedal, O. T. & Gittleman, J. L. Patterns of energy output during reproduction in carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) (Springer, New York, 1989).
Franzmann, A. W. & Schwartz, C. C. Evaluating condition of Alaskan black bears with blood profiles. J. Wildl. Manage. 52(1), 63–70 (1988).
McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99(5), 1065–1071 (2018).
Stocker, R., Glazer, A. N. & Ames, B. N. Antioxidant activity of albumin-bound bilirubin. Proc. Nat. Acad. Sci. 84(16), 5918–5922 (1987).
Beaulieu, M. & Costantini, D. Biomarkers of oxidative status: missing tools in conservation physiology. Conserv. Physiol. 2(1), 014 (2014).
Tothova, C., Nagy, O. & Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine, a review. Vet. Med. 61(9), 475–496 (2016).
Peck, H. E., Costa, D. P. & Crocker, D. E. Body reserves influence allocation to immune responses in capital breeding female northern elephant seals. Funct. Ecol. 30(3), 389–397 (2016).
Deng, P., Jones, J. C. & Swanson, K. S. Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy adult cats. Metabolomics 10(4), 638–650 (2014).
Wilkens, M. R., Firmenich, C. S., Schnepel, N. & Muscher-Banse, A. S. A reduced protein diet modulates enzymes of vitamin D and cholesterol metabolism in young ruminants. J. Ster. Biochem. Mol. Biol. 186, 196–202 (2019).
Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115(3), 195–205 (2015).
Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).
Chinnadurai, S. K., Strahl-Heldreth, D., Fiorello, C. V. & Harms, C. A. Best-practice guidelines for field-based surgery and anesthesia of free-ranging wildlife I Anesthesia and analgesia. J. Wildl. Dis. 52, S14–S27 (2016).
Santos, N. et al. Characterization and minimization of the stress response to trapping in free-ranging wolves (Canis lupus): insights from physiology and behavior. Stress 20(5), 513–522 (2017).
Harris, S. Age determination in the red fox (Vulpes vulpes): an evaluation of technique efficiency as applied to a sample of suburban foxes. J. Zool. 184(1), 91–117 (1978).
Gipson, P., Ballard, W., Nowak, R. & Mech, D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manage. 64(3), 752–758 (2000).
Anders, U., von Koenigswald, W., Ruf, I. & Smith, B. H. Generalized individual dental age stages for fossil and extant placental mammals. Paläontol. Z. 85(3), 321–339 (2011).
Santos, N. et al. Hematology and serum biochemistry values of free-ranging Iberian wolves (Canis lupus) trapped by leg-hold snares. Eur. J. Wildl. Res. 61(1), 135–141 (2015).
Anchinmane, V. & Sankhe, S. Evaluation of hemoglobin estimation with non-cyanide alkaline haematin D-575 method. Int. J. Res. Med. Sci. 44(10), 4297–4299 (2016).
R Core Team. R, A language and environment for statistical computing. R Foundation for Statistical Computing (2019). https://www.R-project.org
Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64(4), 1–34 (2015).
Anderson, T. W. & Darling, D. A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952).
Zar, J. H. Encyclopedia of Biostatistics (ed. Zar, J. H.) (Wiley, Hoboken, 2005).
Pouillot, R. & Delignette-Muller, M. L. Evaluating variability and uncertainty in microbial quantitative risk assessment using two R packages. Int. J. Food Microb. 142(3), 330–340 (2010).
Vose, D. Risk analysis: a quantitative guide (ed. Vose, D.) 1–735 (Wiley, Hoboken, 2008).
Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecol. 92, 3–10 (2011).
Su, Y. S., Yajima, M. R2jags: Using R to run ‘JAGS’. R package version 0.5–7, 34 (2015).
Plummer, M. JAGS version 4.3. 0 user manual [Computer software manual]. Retrieved from sourceforge.net/projects/mcmc-jags/files/Manuals/4.x, 2 (2017).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472 (1992).
Source: Ecology - nature.com