in

Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores

  • 1.

    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123(1), 111–119 (2014).

    Article  Google Scholar 

  • 2.

    Wilder, S. M., Raubenheimer, D. & Simpson, S. J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30(1), 108–115 (2016).

    Article  Google Scholar 

  • 3.

    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32(5), 1203–1213 (2018).

    Article  Google Scholar 

  • 4.

    Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14(7), 625–634 (2011).

    PubMed  Article  Google Scholar 

  • 5.

    Coon, C. A., Nichols, B. C., McDonald, Z. & Stoner, D. C. Effects of land-use change and prey abundance on the body condition of an obligate carnivore at the wildland-urban interface. Landsc. Urban Plan. 192, 103648 (2019).

    Article  Google Scholar 

  • 6.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Article  Google Scholar 

  • 7.

    Barnett, C. A., Suzuki, T. N., Sakaluk, S. K. & Thompson, C. F. Mass-based condition measures and their relationship with fitness: in what condition is condition?. J. Zool. 296(1), 1–5 (2015).

    Article  Google Scholar 

  • 8.

    Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. A. Physiol. 325(9), 588–597 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Stevenson, R. & Woods, W. A. Condition indices for conservation: new uses for evolving tools. Int. Comp. Biol. 46(6), 1169–1190 (2006).

    CAS  Article  Google Scholar 

  • 10.

    Homyack, J. A. Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl. Res. 37(4), 332–342 (2010).

    Article  Google Scholar 

  • 11.

    Hayes, J. P. & Shonkwiler, J. S. Morphometric indicators of body condition, worthwhile or wishful thinking? In Body Composition Analysis of Animals, a Handbook of Non-destructive Methods (ed. Spearman, J. R.) 8–38 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  • 12.

    Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24(6), 1323–1332 (2010).

    Article  Google Scholar 

  • 13.

    Larivière, S. et al. Influence of food shortage during the summer on body composition and reproductive hormones in the red fox, Vulpes vulpes. Can. J. Zool. 79(3), 471–477 (2001).

    Article  Google Scholar 

  • 14.

    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23(1), 57–69 (2009).

    Article  Google Scholar 

  • 15.

    Risco, D. et al. Biometrical measurements as efficient indicators to assess wild boar body condition. Ecol. Indic. 88, 43–50 (2018).

    Article  Google Scholar 

  • 16.

    Gosler, A. G., Greenwood, J. J. & Perrins, C. Predation risk and the cost of being fat. Nature 377(6550), 621 (1995).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Higginson, A. D., McNamara, J. M. & Houston, A. I. The starvation-predation trade-off predicts trends in body size, muscularity, and adiposity between and within taxa. Am. Nat. 179(3), 338–350 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Houston, A. I., Stephens, P. A., Boyd, I. L., Harding, K. C. & McNamara, J. M. Capital or income breeding? A theoretical model of female reproductive strategies. Behav. Ecol. 18(1), 241–250 (2006).

    Article  Google Scholar 

  • 19.

    Pond, C. M. & Ramsay, M. A. Allometry of the distribution of adipose tissue in Carnivora. Can. J. Zool. 70(2), 342–347 (1992).

    Article  Google Scholar 

  • 20.

    Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37(6), 701–709 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Mangipane, L. S. et al. Dietary plasticity in a nutrient-rich system does not influence brown bear (Ursus arctos) body condition or denning. Polar Biol. 41(4), 763–772 (2018).

    Article  Google Scholar 

  • 22.

    Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100(2), 126 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Graham, A. L. et al. Fitness consequences of immune responses, strengthening the empirical framework for ecoimmunology. Func. Ecol. 25(1), 5–17 (2011).

    Article  Google Scholar 

  • 24.

    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity, mediation by physiological trade-offs. Phil. Trans. R. Soc. B 363(1490), 321–339 (2007).

    Article  Google Scholar 

  • 25.

    Kindermann, C., Narayan, E. J. & Hero, J. M. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species?. Comp. Biochem. Physiol. A. 203, 220–226 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Whiteman, J. P. et al. Heightened immune system function in polar bears using terrestrial habitats. Physiol. Bioch. Zool 92(1), 1–11 (2019).

    Article  Google Scholar 

  • 27.

    Garrow, J. S. & Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 9(2), 147–153 (1984).

    Google Scholar 

  • 28.

    Fulton, T. W. Rate of growth of sea fishes (ed. Fulton, T. W.) (Neill & Company, Edinburgh, 1902).

  • 29.

    Nash, R. D., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor: setting the record straight. Fisheries 31(5), 236–238 (2006).

    Google Scholar 

  • 30.

    Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20, 201 (1951).

    Article  Google Scholar 

  • 31.

    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness, a comparison of body condition indices. Oikos 77(1), 61–67 (1996).

    Article  Google Scholar 

  • 32.

    Jolicoeur, P. Linear regressions in fishery research, some comments. J. Fish. B. Can. 32(8), 1491–1494 (1975).

    Article  Google Scholar 

  • 33.

    Green, A. J. Mass/length residuals: measures of body condition or generators of spurious results?. Ecol. 82(5), 1473–1483 (2001).

    Article  Google Scholar 

  • 34.

    Lindsjö, J., Fahlman, Å & Törnqvist, E. Animal welfare from mouse to moose – implementing the principles of the 3Rs in wildlife research. J. Wildl. Dis. 52(2S), S65–S77 (2016).

    PubMed  Article  Google Scholar 

  • 35.

    Guyton, A. C., Hall, J. E. Textbook of medical physiology (ed. Guyton, A. C., Hall, J. E) 11th ed. (Elsevier Saunders, Amsterdam, 2006).

  • 36.

    McCue, M. D. Starvation physiology, reviewing the different strategies animals use to survive a common challenge. Comp. Bioch. Physiol. A 156, 1–18 (2010).

    Article  CAS  Google Scholar 

  • 37.

    Russell, K., Lobley, G. E. & Millward, D. J. Whole-body protein turnover of a carnivore, Felis silvestris catus. Br. J. Nutr. 89(1), 29–37 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Delgiudice, G. D., Seal, U. S. & Mech, L. D. Effects of feeding and fasting on wolf blood and urine characteristics. J. Wildl. Manage. 51, 1 (1987).

    Article  Google Scholar 

  • 39.

    Domingo-Roura, X., Newman, C., Calafell, F. & Macdonald, D. W. Blood biochemistry reflects seasonal nutritional and reproductive constraints in the Eurasian badger (Meles meles). Phys. Biochem. Zool. 74, 450–460 (2001).

    CAS  Article  Google Scholar 

  • 40.

    Karasov, W. H., del Rio, C. M. Physiological ecology, how animals process energy, nutrients, and toxins (ed. Karasov, W. H., del Rio, C. M.) 1–739 (Princeton University Press, Princeton, 2007).

  • 41.

    Schmidt, W., Maassen, N., Trost, F. & Böning, D. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur. J. Appl. Physiol. Occ. Physiol. 57(4), 490–498 (1988).

    CAS  Article  Google Scholar 

  • 42.

    Brocherie, F. et al. Association of hematological variables with team-sport specific fitness performance. PLoS ONE 10(12), e0144446 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    McGowan, C. Clinical pathology in the racing horse, the role of clinical pathology in assessing fitness and performance in the racehorse. Vet. Clin. N. Am. 24(2), 405–421 (2008).

    Google Scholar 

  • 44.

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81(2), 259–291 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12(1), 214–225 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B 279(1739), 2891–2898 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Lobo, A., Marti, J. I. & Gimenez-Cassina, C. C. Regional scale hierarchical classification of temporal series of AVHRR vegetation index. Int. J. Rem. Sens. 18(15), 3167–3193 (1997).

    Article  Google Scholar 

  • 48.

    Alcaraz, D., Paruelo, J. & Cabello, J. Identification of current ecosystem functional types in the Iberian Peninsula. Glob. Ecol. Biogeogr. 15(2), 200–212 (2006).

    Article  Google Scholar 

  • 49.

    Oftedal, O. T. & Gittleman, J. L. Patterns of energy output during reproduction in carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) (Springer, New York, 1989).

    Google Scholar 

  • 50.

    Franzmann, A. W. & Schwartz, C. C. Evaluating condition of Alaskan black bears with blood profiles. J. Wildl. Manage. 52(1), 63–70 (1988).

    CAS  Article  Google Scholar 

  • 51.

    McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99(5), 1065–1071 (2018).

    Article  Google Scholar 

  • 52.

    Stocker, R., Glazer, A. N. & Ames, B. N. Antioxidant activity of albumin-bound bilirubin. Proc. Nat. Acad. Sci. 84(16), 5918–5922 (1987).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Beaulieu, M. & Costantini, D. Biomarkers of oxidative status: missing tools in conservation physiology. Conserv. Physiol. 2(1), 014 (2014).

    Article  CAS  Google Scholar 

  • 54.

    Tothova, C., Nagy, O. & Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine, a review. Vet. Med. 61(9), 475–496 (2016).

    Article  Google Scholar 

  • 55.

    Peck, H. E., Costa, D. P. & Crocker, D. E. Body reserves influence allocation to immune responses in capital breeding female northern elephant seals. Funct. Ecol. 30(3), 389–397 (2016).

    Article  Google Scholar 

  • 56.

    Deng, P., Jones, J. C. & Swanson, K. S. Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy adult cats. Metabolomics 10(4), 638–650 (2014).

    CAS  Article  Google Scholar 

  • 57.

    Wilkens, M. R., Firmenich, C. S., Schnepel, N. & Muscher-Banse, A. S. A reduced protein diet modulates enzymes of vitamin D and cholesterol metabolism in young ruminants. J. Ster. Biochem. Mol. Biol. 186, 196–202 (2019).

    CAS  Article  Google Scholar 

  • 58.

    Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115(3), 195–205 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

    Article  Google Scholar 

  • 60.

    Chinnadurai, S. K., Strahl-Heldreth, D., Fiorello, C. V. & Harms, C. A. Best-practice guidelines for field-based surgery and anesthesia of free-ranging wildlife I Anesthesia and analgesia. J. Wildl. Dis. 52, S14–S27 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Santos, N. et al. Characterization and minimization of the stress response to trapping in free-ranging wolves (Canis lupus): insights from physiology and behavior. Stress 20(5), 513–522 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Harris, S. Age determination in the red fox (Vulpes vulpes): an evaluation of technique efficiency as applied to a sample of suburban foxes. J. Zool. 184(1), 91–117 (1978).

    Article  Google Scholar 

  • 63.

    Gipson, P., Ballard, W., Nowak, R. & Mech, D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manage. 64(3), 752–758 (2000).

    Article  Google Scholar 

  • 64.

    Anders, U., von Koenigswald, W., Ruf, I. & Smith, B. H. Generalized individual dental age stages for fossil and extant placental mammals. Paläontol. Z. 85(3), 321–339 (2011).

    Article  Google Scholar 

  • 65.

    Santos, N. et al. Hematology and serum biochemistry values of free-ranging Iberian wolves (Canis lupus) trapped by leg-hold snares. Eur. J. Wildl. Res. 61(1), 135–141 (2015).

    Article  Google Scholar 

  • 66.

    Anchinmane, V. & Sankhe, S. Evaluation of hemoglobin estimation with non-cyanide alkaline haematin D-575 method. Int. J. Res. Med. Sci. 44(10), 4297–4299 (2016).

    Article  Google Scholar 

  • 67.

    R Core Team. R, A language and environment for statistical computing. R Foundation for Statistical Computing (2019). https://www.R-project.org

  • 68.

    Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64(4), 1–34 (2015).

    Article  Google Scholar 

  • 69.

    Anderson, T. W. & Darling, D. A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952).

    MathSciNet  MATH  Article  Google Scholar 

  • 70.

    Zar, J. H. Encyclopedia of Biostatistics (ed. Zar, J. H.) (Wiley, Hoboken, 2005).

  • 71.

    Pouillot, R. & Delignette-Muller, M. L. Evaluating variability and uncertainty in microbial quantitative risk assessment using two R packages. Int. J. Food Microb. 142(3), 330–340 (2010).

    Article  Google Scholar 

  • 72.

    Vose, D. Risk analysis: a quantitative guide (ed. Vose, D.) 1–735 (Wiley, Hoboken, 2008).

  • 73.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecol. 92, 3–10 (2011).

    Article  Google Scholar 

  • 74.

    Su, Y. S., Yajima, M. R2jags: Using R to run ‘JAGS’. R package version 0.5–7, 34 (2015).

  • 75.

    Plummer, M. JAGS version 4.3. 0 user manual [Computer software manual]. Retrieved from sourceforge.net/projects/mcmc-jags/files/Manuals/4.x, 2 (2017).

  • 76.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472 (1992).

    MATH  Article  Google Scholar 


  • Source: Ecology - nature.com

    COVID19: an announced pandemic

    Saving Iñupiaq