in

Rapid functional traits turnover in boreal dragonfly communities (Odonata)

  • 1.

    Bjørnstad, O. N. & Grenfell, B. T. Noisy clockwork: Time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).

    PubMed  Google Scholar 

  • 2.

    Ricklefs, R. E. & Relyea, R. Ecology, The Economy of Nature 7th edn. (W.H. Freeman & Co., Ltd., New York, 2014).

    Google Scholar 

  • 3.

    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    Google Scholar 

  • 4.

    Calijuri, M. D. C., Dos Santos, A. C. A. & Jati, S. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP—Brazil). J. Plankton Res. 24, 617–634 (2002).

    CAS  Google Scholar 

  • 5.

    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl. Acad. Sci. U.S.A. 108, 17034–17039 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Magurran, A. E. & Henderson, P. A. Temporal turnover and the maintenance of diversity in ecological assemblages. Philos. Trans. R. Soc. Lond. Ser. B. 365, 3611–3620 (2010).

    Google Scholar 

  • 7.

    Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25, 730–755 (2006).

    Google Scholar 

  • 8.

    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed  Google Scholar 

  • 9.

    Powney, G. D., Cham, S. S., Smallshire, D. & Isaac, N. J. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3, e1410. https://doi.org/10.7717/peerj.1410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Moldan, F., Cosby, B. J. & Wright, R. F. Modeling past and future acidification of Swedish lakes. Ambio 42, 577–586 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 315, 160–172 (2014).

    Google Scholar 

  • 12.

    Cousins, S. A., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27 (2015).

    PubMed Central  Google Scholar 

  • 13.

    HELCOM, Helsinki Commission. Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013; https://www.helcom.fi/lists/publications/bsep137.pdf (2013).

  • 14.

    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).

    Google Scholar 

  • 15.

    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Fresh Sci. 34, 1040–1049 (2015).

    Google Scholar 

  • 16.

    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Cons. 10, 673–690 (2001).

    Google Scholar 

  • 17.

    Monteiro-Júnior, C. D. S., Juen, L. & Hamada, N. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol. Ind. 48, 303–311 (2015).

    Google Scholar 

  • 18.

    Suhling, F. et al. Order Odonata. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 893–932 (Academic Press, New York, 2015).

    Google Scholar 

  • 19.

    Appelberg, M., Henrikson, B. I., Henrikson, L. & Svedäng, M. Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22, 290–297 (1993).

    Google Scholar 

  • 20.

    Al Jawaheri, R. & Sahlén, G. Negative impact of lake liming programmes on the species richness of dragonflies (Odonata): A study from southern Sweden. Hydrobiologia 788, 99–113 (2017).

    Google Scholar 

  • 21.

    Sahlén, G. Specialists vs generalists in the Odonata–the importance of forest environments in the formation of diverse species pools. In Forests and dragonflies (ed. Cordero Rivera, A.) 153–179 (Pensoft, Sofia, 2006).

    Google Scholar 

  • 22.

    Dalzochio, M. S., Périco, E., Renner, S. & Sahlén, G. Effect of tree plantations on the functional composition of Odonata species in the highlands of southern Brazil. Hydrobiologia 808, 283–300 (2018).

    Google Scholar 

  • 23.

    Renner, S., Périco, E., Dalzochio, M. S. & Sahlén, G. Water body type and land cover shape the dragonfly communities (Odonata) in the Pampa biome, Rio Grande do Sul Brazil. J. Insect Cons. 22, 113–125 (2018).

    Google Scholar 

  • 24.

    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change?. Insect Conserv. Diver. 1, 169–179 (2008).

    Google Scholar 

  • 25.

    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiv. Cons. 23, 2107–2126 (2014).

    Google Scholar 

  • 26.

    Buisson, L., Grenouillet, G., Villéger, S., Canal, J. & Laffaille, P. Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biol. 19, 387–400 (2013).

    ADS  Google Scholar 

  • 27.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14, 677–689 (2011).

    PubMed  Google Scholar 

  • 28.

    Lawson, C., Vindenes, Y., Baley, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).

    PubMed  Google Scholar 

  • 29.

    Shimadzu, H., Dornelas, M. & Magurran, A. E. Measuring temporal turnover in ecological communities. Methods Ecol. Evol. 6, 1384–1394 (2015).

    Google Scholar 

  • 30.

    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).

    Google Scholar 

  • 31.

    Koch, K., Wagner, C. & Sahlén, G. Farmland versus forest: comparing changes in Odonata species composition in western and eastern Sweden. Insect Cons. Divers. 7, 22–31 (2014).

    Google Scholar 

  • 32.

    Norling, U. & Sahlén, G. Odonata, dragonflies and damselflies in Aquatic insects of North Europe: a taxonomic handbook, Vol. 2 (ed. Nilsson, A.) 13–65 (Apollo books, 1997).

  • 33.

    Corbet, P. S. Dragonflies–behaviour and ecology of Odonata (Cornell University Press, Cornell, 1999).

    Google Scholar 

  • 34.

    Pereira, D. F. G., de Oliveira Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).

    Google Scholar 

  • 35.

    Johansson, F., Śniegula, S. & Brodin, T. Emergence patterns and latitudinal adaptations in development time of Odonata in north Sweden and Poland. Odonatologica 39, 97–106 (2010).

    Google Scholar 

  • 36.

    Suhling, I. & Suhling, F. Thermal adaptation affects interactions between a range-expanding and a native odonate species. Freshw. Biol. 58, 705–714 (2013).

    Google Scholar 

  • 37.

    Atkinson, D. Temperature and organism size: a biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).

    Google Scholar 

  • 38.

    Menéndez, R. How are insects responding to global warming?. Tijdschr. Entomol. 150, 355–364 (2007).

    Google Scholar 

  • 39.

    Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benth. Soc. 10, 309–321 (1991).

    Google Scholar 

  • 40.

    Waringer, J. A. & Humpesch, U. H. Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshw. Biol. 14, 385–399 (1984).

    Google Scholar 

  • 41.

    Martens, A. Annual development of Libellula quadrimaculata L in a newly setup pond (Anisoptera: Libellulidae). Notul. Odonatol. 2, 133–134 (1986).

    Google Scholar 

  • 42.

    Norling, U. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2, 127–156 (1984).

    Google Scholar 

  • 43.

    Hassall, C., Thompson, D. J., French, G. C. & Harvey, I. F. Historical changes in the phenology of British Odonata are related to climate. Glob. Change Biol. 13, 933–941 (2007).

    ADS  Google Scholar 

  • 44.

    Dingemanse, N. J. & Kalkman, V. J. Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol. Ent. 33, 394–402 (2008).

    Google Scholar 

  • 45.

    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151. https://doi.org/10.1002/ecs2.2151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Fincke, O. M. & Hadrys, H. Unpredictable offspring survivorship in the damselfly Megaloprepus coerulatus, shapes parental behavior, constraints sexual selection, and challenges traditional fitness-estimates. Evolution 55, 762–772 (2001).

    CAS  PubMed  Google Scholar 

  • 47.

    Johansson, F. Intraguild predation and cannibalism in odonate larvae: effects of foraging behaviour and zooplankton availability. Oikos 66, 80–87 (1993).

    Google Scholar 

  • 48.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 49.

    SMHI, Swedish Meteorological and Hydrological Institute. Swedish air temperature, snow and wind; https://www.smhi.se/klimatdata (2017).

  • 50.

    Johansson, F. The slow–fast life style characteristics in a suite of six species of odonate larvae. Freshw. Biol. 43, 149–159 (2000).

    Google Scholar 

  • 51.

    Rychła, A., Benndorf, J. & Buczyński, P. Impact of pH and conductivity on species richness and community structure of dragonflies (Odonata) in small mining lakes. Fundam. Appl. Limnol. Arch. Hydrobiol. 179, 41–50 (2011).

    Google Scholar 

  • 52.

    National Register of Survey test-fishing – NORS. Swedish test fishing database; https://www.slu.se/en/departments/aquatic-resources1/databases1/national-register-of-survey-test-fishing-nors/ (2020).

  • 53.

    Robert, P.-A. Les Libellules (Delachaux & Niestlié, 1958).

  • 54.

    Harrington, R., Fleming, R. A. & Woiwod, I. P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agric. For. Entomol. 3, 233–240 (2001).

    Google Scholar 

  • 55.

    Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).

    CAS  PubMed  Google Scholar 

  • 56.

    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).

    Google Scholar 

  • 57.

    Kalkman, V.J. et al. European Red List of Dragonflies. Publications Office of the European Union; https://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_dragonflies.pdf (2010).

  • 58.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed  Google Scholar 

  • 59.

    Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601. https://doi.org/10.1088/0034-4885/77/2/026601 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Popova, O. N., Haritonov, AYu. & Erdakov, L. N. Cyclicity of long-term population dynamics in dragonflies of the genus Sympetrum (Odonata, Anisoptera) in the basin of Lake Chany. Contemp. Probl. Ecol. 11, 551–562 (2018).

    Google Scholar 

  • 61.

    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Conserv. 10, 673–690 (2001).

    Google Scholar 

  • 62.

    Korkeamäki, E., Elo, M., Sahlén, G., Salmela, J. & Suhonen, J. Regional variations in occupancy frequency distribution patterns between odonate assemblages in Fennoscandia. Ecosphere 9, e02192. https://doi.org/10.1002/ecs2.2192 (2018).

    Article  Google Scholar 

  • 63.

    Angeler, D. G. & Johnson, R. K. Patterns of temporal community turnover are spatially synchronous across boreal lakes. Freshw. Biol. 57, 1782–1793 (2012).

    Google Scholar 

  • 64.

    MAGIC biblioteket sjöar. Lake data from Sweden; https://magicbiblioteket.ivl.se/ (2016).

  • 65.

    Swedish Forest Agency. Silvicultural activities; Planted area and Pre-commercially thinned area: 3-year average, 1000 hectares by region, year and ownership class; https://pxweb.skogsstyrelsen.se/pxweb/en/Skogsstyrelsens%20statistikdatabas/ (2016).

  • 66.

    SCB, Statistics Sweden. Land use in Sweden – Land use: Arable land and forest land by region and land use category; https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0803__MI0803A/MarkanvJbSk/ (2019).

  • 67.

    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change Biol. 11, 502–506 (2005).

    ADS  Google Scholar 

  • 68.

    Conti, L., Schmidt-Kloiber, A., Grenouillet, G. & Graf, W. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721, 297–315 (2014).

    CAS  Google Scholar 

  • 69.

    Lavorel, S. et al. Assessing functional diversity in the field–methodology matters!. Funct. Ecol. 22, 134–147 (2008).

    Google Scholar 

  • 70.

    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12; https://cran.r-project.org/web/packages/FD/index.html (2014).

  • 71.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).

  • 72.

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Google Scholar 

  • 73.

    Dijkstra, K. D. B. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe (British Wildlife Publishing, Devon, 2006).

    Google Scholar 

  • 74.

    Norling, U. Livscykler hos svenska Odonater. Entomologen 4, 1–14 (1975).

    Google Scholar 

  • 75.

    Norling, U. The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica 13, 429–449 (1984).

    Google Scholar 

  • 76.

    Norling, U. Photoperiodic control of larval development in Leucorrhinia dubia (Vander Linden): a comparison between populations from northern and southern Sweden (Anisoptera: Libellulidae). Odonatologica 13, 529–550 (1984).

    Google Scholar 


  • Source: Ecology - nature.com

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    Evaluating battery revenues for offshore wind farms using advanced modeling