
Sih, A., Bell, A. & Johnson, J. C. Behavioural syndromes: an ecological and evolutionary overview. TREE 19, 372–377, https://doi.org/10.1016/j.tree.2004.04.009 (2004).
Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity? TREE 23, 361–368, https://doi.org/10.1016/j.tree.2008.04.003 (2008).
Duckworth, R. A. Evolution of personality: developmental constraints on behavioural flexibility. The Auk 127, 752–758, https://doi.org/10.1525/auk.2010.127.4.752 (2010).
Wolf, M. & Weissing, F. J. An explanatory framework for adaptive personality differences. Philos. Trans. R. Soc. B 365, 3959–3968, https://doi.org/10.1098/rstb.2010.0215 (2010).
Carere, C. & Maestripieri, D. editors. 2013. Animal personalities. Behavior, physiology, and evolution. Chicago (IL): The University of Chicago Press.
Dochtermann, N. A. & Dingemanse, N. J. Behavioral syndromes as evolutionary constraints. Behav. Ecol. 24, 806–811, https://doi.org/10.1093/beheco/art002 (2013).
Réale, D., Gallant, B. Y., Leblanc, M. & Festa-Bianchet, M. Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim. Behav. 60, 589–597 (2000).
Adriaenssens, B. & Johnsson, J. I. Shy trout grow faster: exploring links between personality and fitness-related traits in the wild. Behav. Ecol. 22, 135–143, https://doi.org/10.1093/beheco/arq185 (2011).
Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A metaanalysis. Behav. Ecol. 19, 448–455, https://doi.org/10.1093/beheco/arm144 (2008).
Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).
Both, C., Dingemanse, N. J., Drent, P. J. & Tinbergen, J. M. Pairs of extreme avian personalities have highest reproductive success. J. Anim. Ecol. 74, 667–674, https://doi.org/10.1111/j.1365-2656.2005.00962.x (2005).
Monestier, C. et al. Is a proactive mum a good mum? A mother’s coping style influences early fawn survival in roe deer. Behav. Ecol. 26, 1395–1403, https://doi.org/10.1093/beheco/arv087 (2015).
May, T. M., Page, M. J. & Fleming, P. A. Predicting survivors: animal temperament and translocation. Behav. Ecol. 27, 969–977, https://doi.org/10.1093/beheco/arv242 (2016).
Archard, G. A. & Braithwaite, V. A. The importance of wild populations in studies of animal temperament. J. Zool. 281, 149–160, https://doi.org/10.1111/j.1469-7998.2010.00714.x (2010).
Ferrari, C. et al. Testing for the presence of coping styles in a wild mammal. Anim. Behav. 85, 1385–1396, https://doi.org/10.1016/j.anbehav.2013.03.030 (2013).
Herborn, K. A. et al. Personality in captivity reflects personality in the wild. Anim. Behav. 79, 835–843, https://doi.org/10.1016/j.anbehav.2009.12.026 (2010).
Twiss, S. D., Cairns, C., Culloch, R. M., Richards, S. A. & Pomeroy, P. P. Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. Plos One 7, e49598, https://doi.org/10.1371/journal.pone.0049598 (2012).
Blaszczyk, M. B. Boldness towards novel objects predicts predator inspection in wild vervet monkeys. Anim. Behav. 123, 91–100, https://doi.org/10.1016/j.anbehav.2016.10.017 (2017).
Ward‐Fear, G. et al. The ecological and life history correlates of boldness in free‐ranging lizards. Ecosphere 9, e02125, https://doi.org/10.1002/ecs2.2125 (2018).
DeRango, E. J. et al. Intrinsic and maternal traits influence personality during early life in Galápagos sea lion (Zalophus wollebaeki) pups. Anim. Behav. 154, 111–120, https://doi.org/10.1016/j.anbehav.2019.06.011 (2019).
Benson-Amram, S. & Holekamp, K. E. Innovative problem solving by wild spotted hyenas. Proc. R. Soc. B. 279, 4087–4095, https://doi.org/10.1098/rspb.2012.1450 (2012).
Carter, A. J., Marshall, H. H., Heinsohn, R. & Cowlishaw, G. How not to measure boldness: novel object and antipredator responses are not the same in wild baboons. Anim. Behav. 84, 603–609, https://doi.org/10.1016/j.anbehav.2012.06.015 (2012).
Arvidsson, L. A., Adriaensen, F., van Dongen, S., De Stobbeleere, N. & Matthysen, E. Exploration behaviour in a different light: testing cross-context consistency of a common personality trait. Anim. Behav. 123, 151–158, https://doi.org/10.1016/j.anbehav.2016.09.005 (2017).
Yuen, C. H., Schoepf, I., Schradin, C. & Pillay, N. Boldness: are open field and startle tests measuring the same personality trait? Anim. Behav. 128, 143–151, https://doi.org/10.1016/j.anbehav.2017.04.009 (2017).
Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Letts. 15, 278–289, https://doi.org/10.1111/j.1461-0248.2011.01731.x (2012).
Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318, https://doi.org/10.1111/j.1469-185X.2007.00010.x (2007).
Wolf, M. & Weissing, F. J. Animal personalities: consequences for ecology and evolution. TREE 27, 452–461, https://doi.org/10.1016/j.tree.2012.05.001 (2012).
Sgoifo, A. et al. Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am. J. Physiol. 273, 1754–60 (1997).
Koolhaas, J. M. et al. Coping styles in animals: current status in behavior and stress physiology. Neurosci. Biobehav. Rev. 23, 925–935 (1999).
Koolhaas, J. M., De Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321, https://doi.org/10.1016/j.yfrne.2010.04.001 (2010).
Visser, E. K. et al. Heart rate and heart rate variability during a novel object test and a handling test in young horses. Physiol. Behav. 76, 289–296, https://doi.org/10.1016/S0031-9384(02)00698-4 (2002).
von Borell, E. et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals: a review. Physiol. Behav. 92, 293–316 (2007).
Jonckheer-Sheehy, V. S. M., Vinke, C. M. & Ortolani, A. Validation of a Polar® human heart rate monitor for measuring heart rate and heart rate variability in adult dogs under stationary conditions. J. Vet. Behav. 7, 205–212, https://doi.org/10.1016/j.jveb.2011.10.006 (2012).
Øverli, Ø. et al. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci. Biobehav. Rev. 31, 396–412, https://doi.org/10.1016/j.neubiorev.2006.10.006 (2007).
Rödel, H. G., Monclús, R. & von Holst, D. Behavioral styles in European rabbits: social interactions and responses to experimental stressors. Physiol. Behav. 89, 180–188, https://doi.org/10.1016/j.physbeh.2006.05.042 (2006).
Bubac, C. M. et al. Repeatability and reproductive consequences of boldness in female gray seals. Behav. Ecol. Sociobiol. 72, 100, https://doi.org/10.1007/s00265-018-2515-5 (2018).
Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. In press. Coping styles in capital breeders modulate behavioural trade-offs in time allocation: assessing fine-scale activity budgets in lactating grey seals (Halichoerus grypus) using accelerometry and heart rate variability. Behav. Ecol. Sociobiol. 74, 8, https://doi.org/10.1007/s00265-019-2783-8.
Carere, C., Caramaschi, D. & Fawcett, T. W. Covariation between personalities and individual differences in coping with stress: Converging evidence and hypotheses. Curr. Zool. 56, 728–740 (2010).
Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B 365, 4021–4028, https://doi.org/10.1098/rstb.2010.0217 (2010).
Kontiainen, P. et al. Aggressive Ural owl mothers recruit more offspring. Behav. Ecol. 20, 789–796, https://doi.org/10.1093/beheco/arp062 (2009).
Pomeroy, P. P., Fedak, M. A., Rothery, P. & Anderson, S. Consequences of maternal size for reproductive expenditure and pupping success of grey seals at North Rona, Scotland. J. Anim. Ecol. 68, 235–253, https://doi.org/10.1046/j.1365-2656.1999.00281.x (1999).
Santicchia, F. et al. Habitat-dependent effects of personality on survival and reproduction in red squirrels. Behav. Ecol. Sociobiol. 72, 134, https://doi.org/10.1007/s00265-018-2546-y (2018).
Ruiz-Gomez, M. et al. Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiology and Behavior 102, 317–22, https://doi.org/10.1016/j.physbeh.2010.11.023 (2011).
Boness, D. J., Anderson, S. S. & Cox, C. R. Functions of female aggression during the pupping and mating season of grey seals, Halichoerus grypus (Fabricius). Can. J Zool. 60, 2270–2278, https://doi.org/10.1139/z82-293 (1982).
Anderson, S. S. & Harwood, J. Time budgets and topography – how energy reserves and terrain determine the breeding behaviour of grey seals. Anim. Behav. 33, 1343–1348, https://doi.org/10.1016/S0003-3472(85)80196-2 (1985).
Twiss, S. D., Caudron, A., Pomeroy, P. P., Thomas, C. J. & Mills, J. P. Finescale topographical correlates of behavioural investment in offspring by female grey seals, Halichoerus grypus. Anim. Behav. 59, 327–338, https://doi.org/10.1006/anbe.1999.1320 (2000).
Redman, P., Pomeroy, P. P. & Twiss, S. D. Grey seal maternal attendance patterns are affected by water availability on North Rona, Scotland. Can. J. Zool. 79, 1073–1079, https://doi.org/10.1139/z01-081 (2001).
Twiss, S. D., Thomas, C. J., Poland, V. F., Graves, J. A. & Pomeroy, P. P. The impact of climatic variation on the opportunity for sexual selection. Biol. Letts. 3, 12–15, https://doi.org/10.1098/rsbl.2006.0559 (2007).
Stephenson, C. M., Matthiopoulos, J. & Harwood, J. Influence of the physical environment and conspecific aggression on the spatial arrangement of breeding grey seals. Ecol. Inform. 2, 308–317, https://doi.org/10.1016/j.ecoinf.2007.09.001 (2007).
Stewart, J. E., Pomeroy, P. P., Duck, C. D. & Twiss, S. D. Finescale ecological niche modeling provides evidence that lactating gray seals (Halichoerus grypus) prefer access to fresh water in order to drink. Mar. Mamm. Sci. 30, 1456–72, https://doi.org/10.1111/mms.12126 (2014).
Pomeroy, P. P., Anderson, S. S., Twiss, S. D. & McConnell, B. J. Dispersion and site fidelity of breeding female grey seals (Halichoerus grypus) on North Rona, Scotland. J. Zool. 233, 429–447, https://doi.org/10.1111/j.1469-7998.1994.tb05275.x (1994).
Bijleveld, A. I. et al. Personality drives physiological adjustments and is not related to survival. Proc. R. Soc. B. 281, 20133135, https://doi.org/10.1098/rspb.2013.3135 (2014).
de Witt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–91 (1998).
Ruiz-Gomez, M. D. E. L. et al. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles: When doves become hawks. Hormones and Behavior 54, 534–538, https://doi.org/10.1016/j.yhbeh.2008.05.005 (2008).
Hulme, M. et al. Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK. 120pp (2002).
Post, E S. & Mann, M. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-22258-0 (2018).
Bolnick, D. I. et al. The Ecology of Individuals: Incidence and Implications of Individual Specialization. Am.Nat. 161, 1–28, https://doi.org/10.1086/343878 (2003).
Violle, C. et al. The return of the variance: intraspecific variability in community ecology. TREE 27, 244–252, https://doi.org/10.1016/j.tree.2011.11.014 (2012).
Carrete, M. & Tella, J. L. Inter-Individual Variability in Fear of Humans and Relative Brain Size of the Species Are Related to Contemporary Urban Invasion in Birds. Plos One 6, e18859, https://doi.org/10.1371/journal.pone.0018859 (2011).
Zidar, J. et al. A comparison of animal personality and coping styles in the red junglefowl. Anim. Behav. 130, 209–220, https://doi.org/10.1016/j.anbehav.2017.06.024 (2017).
Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. TREE 25, 81–89, https://doi.org/10.1016/j.tree.2009.07.013 (2010).
Twiss, S. D., Poland, V. F., Graves, J. A. & Pomeroy, P. P. Finding fathers: Spatio-temporal analysis of paternity assignment in grey seals (Halichoerus grypus). Mol. Ecol. 15, 1939–1953, https://doi.org/10.1111/j.1365-294X.2006.02927.x (2006).
Smout, S., King, R. & Pomeroy, P. Environment‐sensitive mass changes influence breeding frequency in a capital breeding marine top predator. J. Anim. Ecol. 00, 1–13, https://doi.org/10.1111/1365-2656.13128 (2019).
Hiby, L. et al. Analysis of photo‐id data allowing for missed matches and individuals identified from opposite sides. Methods Ecol. Evol. 4, 252–259, https://doi.org/10.1111/2041-210x.12008 (2013).
Bennett, K. A., Speakman, J. R., Moss, S. E. W., Pomeroy, P. P. & Fedak, M. A. Effects of mass and body composition on fasting fuel utilisation in grey seal pups (Halichoerus grypus Fabricius): an experimental study using supplementary feeding. J. Exp. Biol. 210, 3043–3053, https://doi.org/10.1242/jeb.009381 (2007).
Langton, S. D., Moss, S. E., Pomeroy, P. P. & Borer, K. E. Effect of induction dose, lactation stage and body condition on tiletamine-zolazepam anaesthesia in adult female grey seals (Halichoerus grypus) under field conditions. Vet. Rec. 168, 457, https://doi.org/10.1136/vr.d1047 (2011).
Marchant-Forde, R. M., Marlin, D. J. & Marchant-Forde, J. N. Validation of a cardiac monitor for measuring heart rate variability in adult female pigs: accuracy, artefacts and editing. Physiol. Behav. 80, 449–458 (2004).
Hopster, H. & Blokhuis, H. K. Validation of a heart-rate response monitor for measuring a stress response in dairy cows. Can. J. Anim. Sci. 74, 465–474 (1994).
Parker, M., Goodwin, D., Eager, R. A., Redhead, E. S. & Marlin, D. J. Comparison of Polar® heart rate interval data with simultaneously recorded ECG signals in horses. Comp. Exercise Physiol. 6, 137–142, https://doi.org/10.1017/S1755254010000024 (2010).
Ille, N., Erber, R., Aurich, C. & Aurich, J. Comparison of heart rate and heart rate variability obtained by heart rate monitors and simultaneously recorded electrocardiogram signals in nonexercising horses. J. Vet. Behav. 9, 341–346, https://doi.org/10.1016/j.jveb.2014.07.006 (2014).
Essner, A. et al. Comparison of Polar® RS800CX heart rate monitor and electrocardiogram for measuring inter-beat intervals in healthy dogs. Physiol. Behav. 138, 247–253, https://doi.org/10.1016/j.physbeh.2014.10.034 (2015).
Brannan, N. B. L. Investigating the physiological underpinnings of proactive and reactive behavioural types in grey seals (Halichoerus grypus): Trial deployment of a minimally invasive data logger for recording heart rate and heart rate variability in a wild free-ranging breeding pinniped species, Durham theses, Durham University. Available at Durham E-Theses Online, http://etheses.dur.ac.uk/11980/ (2017).
Berntson, G. G. et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 34, 623–648, https://doi.org/10.1111/j.1469-8986.1997.tb02140.x (1997).
Saalasti, S., Seppänen, M. & Kuusela, A. Artefact correction for heart beat interval data. In: Advanced Methods for Processing Bioelectrical Signals; 1st Probisi 2004 Proceedings. Jyväskylä, Finland: University of Jyväskylä (2004).
Martínez, C. A. G. et al. Heart Rate Variability Analysis with the R Package RHRV, Springer (2017).
Penttila, J., Helminen, A., Jartti, T. & Kuusela, T. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin. Physiol. 21, 365–376, https://doi.org/10.1046/j.1365-2281.2001.00337.x (2001).
Pohlin, F. et al. Seasonal variations in heart rate variability as an indicator of stress in free-ranging pregnant Przewalski’s horses (E. ferus przewalskii) within the Hortobágy National Park in Hungary. Front. Physiol. 8, 664, https://doi.org/10.3389/fphys.2017.00664 (2017).
Altmann, J. Observational study of behavior: sampling methods. Behav. 49, 227–267 (1974).
Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelem. 6, 14, https://doi.org/10.1186/s40317-018-0158-y (2018).
Kovacs, K. M. & Lavigne, D. Growth of grey seal (Halichoerus grypus) neonates: Differential maternal investment in the sexes. Can. J. Zool. 64, 1937–1943, https://doi.org/10.1139/z86-291 (1986).
Kovacs, K. M. Maternal behaviour and early behavioural ontogeny of grey seals (Halichoerus grypus) on the Isle of May, UK. J. Zool. 213, 697–715, https://doi.org/10.1111/j.1469-7998.1987.tb03735.x (1987).
Anderson, S. S. & Fedak, M. A. Grey seal, Halichoerus grypus, energetics: females invest more in male offspring. J. Zool. 211, 667–679, https://doi.org/10.1111/j.1469-7998.1987.tb04478.x (1987).
Haller, M. A., Kovacs, K. & Hammill, M. O. Maternal behaviour and energy investment by grey seals (Halichoerus grypus) breeding on land-fast ice. Can. J. Zool. 74, 1531–1541, https://doi.org/10.1139/z96-167 (1996).
Mellish, J. A. E., Iverson, S. J. & Bowen, W. D. Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics. Physiol. Biochem. Zool. 72, 677–90, https://doi.org/10.1086/316708 (1999).
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783, https://doi.org/10.1016/j.anbehav.2008.12.022 (2009).
Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956, https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).
Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644, https://doi.org/10.1111/2041-210X.12797 (2017).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i0 (2015).
Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. TREE 24, 127–135, https://doi.org/10.1016/j.tree.2008.10.008 (2009).
Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. Anim. Ecol. 82, 39–54, https://doi.org/10.1111/1365-2656.12013 (2013).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14, https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
Bartón, K. MuMIn: multi-model inference. R package version 1.10.0. 2014. Available online at, http://cran.r-project.org/package=MuMIn (2014).
Richards, S. A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218–227, https://doi.org/10.1111/j.1365-2664.2007.01377.x (2008).
Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89, https://doi.org/10.1007/s00265-010-1035-8 (2011).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).
Source: Ecology - nature.com