in

Reduced ecological resilience jeopardizes zero loss of biodiversity using the mitigation hierarchy

  • 1.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    • Article
    • Google Scholar
  • 2.

    Making Biodiversity Matter. Knowledge and Know-how for the post-2020 Global Biodiversity Framework. Report to the Co-chairs. The Ninth Trondheim Conference on Biodiversity (Trondheim Conferences on Biodiversity, 2019).

  • 3.

    Open-ended Working Group on the post-2020 Global Biodiversity Framework Zero Draft of the post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).

  • 4.

    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).

    • Article
    • Google Scholar
  • 5.

    Addison, P. F. E. & Bull, J. W. Conservation accord: corporate incentives. Science 360, 1195–1196 (2018).

  • 6.

    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).

    • Article
    • Google Scholar
  • 7.

    Gibbons, P., Macintosh, A., Constable, A. L. & Hayashi, K. Outcomes from 10 years of biodiversity offsetting. Glob. Change Biol. 24, e643–e654 (2018).

    • Article
    • Google Scholar
  • 8.

    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).

    • Article
    • Google Scholar
  • 9.

    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    • Article
    • Google Scholar
  • 10.

    Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

    • Article
    • Google Scholar
  • 11.

    van de Leemput, I. A., Dakos, V., Scheffer, M. & van Nes, E. H. Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018).

    • Article
    • Google Scholar
  • 12.

    Scheffer, M. et al. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

  • 13.

    Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).

    • Article
    • Google Scholar
  • 14.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

  • 15.

    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    • Article
    • Google Scholar
  • 16.

    Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    • Article
    • Google Scholar
  • 17.

    Meyer, K. et al. Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics. Nat. Sustain. 1, 671–678 (2018).

    • Article
    • Google Scholar
  • 18.

    Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J. & King, L. Conceptualizing forest degradation. Trends Ecol. Evol. 30, 622–632 (2015).

    • Article
    • Google Scholar
  • 19.

    Maron, M. et al. Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biol. Conserv. 155, 141–148 (2012).

    • Article
    • Google Scholar
  • 20.

    Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy? Ecol. Appl. 24, 617–632 (2014).

    • Article
    • Google Scholar
  • 21.

    Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 53, 1686–1693 (2016).

    • Article
    • Google Scholar
  • 22.

    Gonçalves, B., Marques, A., Soares, A. M. V. D. M. & Pereira, H. M. Biodiversity offsets: from current challenges to harmonized metrics.Curr. Opin. Environ. Sustain. 14, 61–67 (2015).

    • Article
    • Google Scholar
  • 23.

    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 277, 1043–1048 (1990).

    • Article
    • Google Scholar
  • 24.

    Janssen, R. H. H., Meinders, M. B. J., van Nes, E. H. & Scheffer, M. Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation-climate system. Global Change Biol. 14, 1104–1112 (2008).

    • Article
    • Google Scholar
  • 25.

    Maron et al. Locking in loss: baselines of decline in Australian biodiversity offset policies. Biol. Conserv. 192, 504–512 (2015).

    • Article
    • Google Scholar
  • 26.

    Maron, M. et al. Conservation: stop misuse of biodiversity offsets. Nature 523, 401–403 (2015).

  • 27.

    Simmonds, J. S. et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. https://doi.org/10.1111/conl.12695 (2019).

  • 28.

    Wu, P. P. et al. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience. Nat. Commun. 8, 1263 (2017).

    • Article
    • Google Scholar
  • 29.

    Moilanen, A. & Laitila, J. Indirect leakage leads to a failure of avoided loss biodiversity offsetting. J. Appl. Ecol. 53, 106–111 (2016).

    • Article
    • Google Scholar
  • 30.

    Buschke, F. T. Biodiversity trajectories and the time needed to achieve no net loss through averted-loss biodiversity offsets. Ecol. Model. 352, 54–57 (2017).

    • Article
    • Google Scholar
  • 31.

    Gibbons, P. et al. A loss‐gain calculator for biodiversity offsets and the circumstances in which no net loss is feasible. Conserv. Lett. 9, 252–259 (2016).

    • Article
    • Google Scholar
  • 32.

    Bull, J. W., Lloyd, S. P. & Strange, N. Implementation gap between theory and practice of biodiversity offset multipliers. Conserv. Lett. 10, 656–669 (2017).

    • Article
    • Google Scholar
  • 33.

    Rossberg, A. On the mathematics of sustainability. Nat. Sustain. 1, 615–616 (2018).

    • Article
    • Google Scholar
  • 34.

    Chapin-Kramer, R. et al. Spatial patterns of agricultural expansion determine effects on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).

    • Article
    • Google Scholar
  • 35.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    • Article
    • Google Scholar
  • 36.

    Gordon, A. Assessing the impacts of biodiversity offset policies. Environ. Modell. Softw. 26, 1481–1488 (2011).

    • Article
    • Google Scholar
  • 37.

    Buschke, F. T. & Sinclair, S. P. Adding ecological and evolutionary processes to restoration biodiversity offset models using neutral theory. Divers. Distrib. 25, 1351–1361 (2019).

    • Article
    • Google Scholar
  • 38.

    O’Brien, S. H., Cook, A. S. C. P. & Robinson, R. A. Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions. J. Environ. Manag. 201, 163–171 (2017).

    • Article
    • Google Scholar
  • 39.

    Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 5–60 (2006).

    • Google Scholar
  • 40.

    Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).

  • 41.

    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    • Article
    • Google Scholar
  • 42.

    Henderson, K. A., Bauch, C. T. & Anand, M. Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proc. Natl Acad. Sci. USA 113, 14552–14559 (2016).

  • 43.

    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).

    • Article
    • Google Scholar
  • 44.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release