in

Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia

  • 1.

    Vatanparast, M. et al. First molecular phylogeny of the pantropical genus Dalbergia: implications for infrageneric circumscription and biogeography. S. Afr. J. Bot. 89, 143–149 (2013).

    CAS  Article  Google Scholar 

  • 2.

    Saha, S. et al. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 4, 291–346 (2013).

    Google Scholar 

  • 3.

    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley, Hoboken, 2009).

    Google Scholar 

  • 4.

    Bhagwat, R. M., Dholakia, B. B., Kadoo, N. Y., Balasundaran, M. & Gupta, V. S. Two new potential barcodes to discriminate Dalbergia species. PLoS ONE 10, 1–18 (2015).

    Article  CAS  Google Scholar 

  • 5.

    EIA. Routes of Extinction: The Corruption and Violence Destroying SIAMESE Rosewood in the Mekong (Environmental Investigation Agency, London, 2014).

    Google Scholar 

  • 6.

    EIA. The Hongmu Challenge: A Briefing for the 66th Meeting of the CITES Standing Committee, January 2016 (2016).

  • 7.

    Winfield, K., Scott, M. & Graysn, C. Global status of Dalbergia and Pterocarpus rosewood producing species in trade. in Convention on International Trade in Endangered Species 17th Conference of Parties – Johannesburg (2016).

  • 8.

    Bentham, G. Synopsis of Dalbergieae, a Tribe of Leguminosae. J. Proc. Linn. Soc. Lond. Bot. 4, 1–128 (1860).

    MathSciNet  Article  Google Scholar 

  • 9.

    Lavin, M. et al. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am. J. Bot. 88, 503 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Hartvig, I. et al. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits. Ecol. Evol. 8, 530–545 (2018).

    Article  PubMed  Google Scholar 

  • 11.

    Hartvig, I., Czako, M., Kjær, E. D., Nielsen, L. R. & Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 10, e0138231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Wattoo, J. I., Saleem, M. Z., Shahzad, M. S., Arif, A. & Hameed, A. DNA barcoding: amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species. Adv. Life Sci. 4, 03–07 (2016).

    CAS  Google Scholar 

  • 13.

    Phong, D. T., Tang, D. V., Hien, V. T. T., Ton, N. D. & Van, H. N. Nucleotide diversity of a nuclear and four chloroplast DNA regions in rare tropical wood species of dalbergia in Vietnam: a DNA barcode identifying utility. Asian J. Appl. Sci. 02, 116–125 (2014).

    Google Scholar 

  • 14.

    Resende, L. C., Ribeiro, R. A. & Lovato, M. B. Diversity and genetic connectivity among populations of a threatened tree (Dalbergia nigra) in a recently fragmented landscape of the Brazilian Atlantic Forest. Genetica 139, 1159–1168 (2011).

    Article  PubMed  Google Scholar 

  • 15.

    Buzatti, R. S. O., Ribeiro, R. A., Filho, J. P. L. & Lovato, M. B. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest. Genet. Mol. Biol. 35, 838–846 (2012).

    Article  Google Scholar 

  • 16.

    Liu, F.-M. et al. De novo transcriptome analysis of Dalbergia odorifera and transferability of SSR markers developed from the transcriptome. Forests 10, 98 (2019).

    Article  Google Scholar 

  • 17.

    Xu, D.-P., Xu, S.-S., Zhang, N.-N., Yang, Z.-J. & Hong, Z. Chloroplast genome of Dalbergia cochinchinensis (Fabaceae), a rare and Endangered rosewood species in Southeast Asia. Mitochondrial DNA B 4, 1144–1145 (2019).

    Article  Google Scholar 

  • 18.

    Wariss, H. M., Yi, T.-S., Wang, H. & Zhang, R. Characterization of the complete chloroplast genome of Dalbergia odorifera (Leguminosae), a rare and critically endangered legume endemic to China. Conserv. Genet. Resour. https://doi.org/10.1007/s12686-017-0866-2 (2017).

    Article  Google Scholar 

  • 19.

    Liu, Y., Huang, P., Li, C.-H., Zang, F.-Q. & Zheng, Y.-Q. Characterization of the complete chloroplast genome of Dalbergia cultrata (Leguminosae). Mitochondrial DNA B 4, 2369–2370 (2019).

    Article  Google Scholar 

  • 20.

    Deng, C., Xin, G., Zhang, J. & Zhao, D. Characterization of the complete chloroplast genome of Dalbergia hainanensis (Leguminosae), a vulnerably endangered legume endemic to China. Conserv. Genet. Resour. 1, 105–108 (2018).

    Google Scholar 

  • 21.

    Song, Y., Zhang, Y., Xu, J., Li, W. & Li, M. F. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 9, 1–10 (2019).

    ADS  Article  CAS  Google Scholar 

  • 22.

    Lateef, A., Prabhudas, S. K. & Natarajan, P. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Sci. Rep. 8, 15375 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 19, 189 (2018).

    Article  CAS  Google Scholar 

  • 24.

    Wang, B., Kumar, V., Olson, A. & Ware, D. Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 10, 384 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Lamble, S. et al. Improved workflows for high throughput library preparation using the transposome-based nextera system. BMC Biotechnol. 13, 104 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Buffalo, V. Scythe—a Bayesian adapter trimmer (version 0.994 BETA) [Software] (2011). https://github.com/vsbuffalo/scythe.

  • 28.

    Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] (2011). https://github.com/najoshi/sickle.

  • 29.

    Carruthers, M. et al. De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19, 32 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Haas, B. J. TransDecoder (2018). https://github.com/TransDecoder/TransDecoder.

  • 34.

    Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucl. Acids Res. 47, D807–D811 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  • 36.

    Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446 (2016).

    CAS  Article  Google Scholar 

  • 37.

    Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    UniProt: a worldwide hub of protein knowledge. Nucl. Acids Res.47, D506–D515 (2019).

  • 39.

    Cheng, C.-Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucl. Acids Res. 47, D427–D432 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Almagro Armenteros, J. J. et al. SignalP 50 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Emms, D. M. & Kelly, S. OrthoFinder2: fast and accurate phylogenomic orthology analysis from gene sequences. BioRxiv https://doi.org/10.1101/466201 (2018).

    Article  Google Scholar 

  • 44.

    Guo, L. et al. The opium poppy genome and morphinan production. Science 362, 343–347 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl. Acids Res. 34, W609–W612 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and high-performance computing. Nat. Methods 9, 772 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Brea, M., Zamuner, A. B., Matheos, S. D., Iglesias, A. & Zucol, A. F. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa An Australas. J. Palaeontol. 32, 427–441 (2008).

    Article  Google Scholar 

  • 51.

    Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005).

    Article  PubMed  Google Scholar 

  • 53.

    Moretzsohn, M. C. et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 111, 113–126 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Ye, J. et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucl. Acids Res. 46, W71 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

  • 56.

    Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl. Acids Res. 41, D377–D386 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 59.

    Sun, J. et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 1, 0121 (2017).

    Article  Google Scholar 

  • 60.

    Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012).

    CAS  Article  Google Scholar 

  • 61.

    Soltis, D. E., Soltis, P. S., Bennett, M. D. & Leitch, I. J. Evolution of genome size in the angiosperms. Am. J. Bot. 90, 1596–1603 (2003).

    Article  PubMed  Google Scholar 

  • 62.

    Hiremath, S. C. & Nagasampige, M. H. Genome size variation and evolution in some species of Dalbergia Linn.f. (Fabaceae). Caryologia 57, 367–372 (2004).

    Article  Google Scholar 

  • 63.

    Lawrence, G. H. M. Taxonomy of Vascular Plants (IBH Publishing Co., Oxford, 1973).

    Google Scholar 

  • 64.

    Lombello, R. A. & Forni-Martins, E. R. Chromosome studies and evolution in Sapindaceae. Caryologia 51, 89–93 (1998).

    Article  Google Scholar 

  • 65.

    Sheremet’ev, S. N. & Gamalei, Y. V. Towards angiosperms genome evolution in time. arXiv (2013).

  • 66.

    Carlquist, S. Anatomy of vine and liana stems: a review and synthesis. In The Biology of Vines (eds Putz, F. E. & Mooney, H. A.) 53–72 (University of Cambridge Press, Cambridge, 1991).

    Google Scholar 

  • 67.

    Li, Q. et al. The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 71, 939–949 (2017).

    CAS  Article  Google Scholar 

  • 68.

    Lavin, M. et al. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos. Trans. R. Soc. B Biol. Sci. 359, 1509–1522 (2004).

    CAS  Article  Google Scholar 

  • 69.

    Kučerová, J. Miocénna flóra z lokalít Kalonda a Mučín. Acta Geol. Slovaca 1, 65–70 (2009).

    Google Scholar 

  • 70.

    Gao, S.-X. & Zhou, Z.-K. The megafossil legumes from China. In Advances in Legume Systematics (eds Herendeen, P. S. & Dilcher, D. L.) (The Royal Botanic Gardens, Kew, 1992).

    Google Scholar 

  • 71.

    de Saporta, G. Dalbergia phleboptera Saporta. Muséum national d’Histoire naturelle (2015). https://science.mnhn.fr/institution/mnhn/collection/f/item/14084.?lang=en_US.

  • 72.

    De Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).

    Article  PubMed  Google Scholar 

  • 73.

    Koenen, E. J. M. et al. The origin and early evolution of the legumes are a complex paleopolyploid phylogenomic tangle closely associated with the cretaceous-paleogene (K-Pg) boundary. biorxiv https://doi.org/10.1101/577957 (2019).

    Article  Google Scholar 

  • 74.

    Lespinet, O., Wolf, Y. I., Koonin, E. V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12, 1048–1059 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Ming, Y. et al. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics https://doi.org/10.1016/j.ygeno.2018.07.015 (2018).

    Article  PubMed  Google Scholar 

  • 76.

    Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Luengo, T. M., Mayer, M. P. & Rüdiger, S. G. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29(2), 164–177. https://doi.org/10.1016/j.tcb.2018.10.004 (2019).

    CAS  Article  Google Scholar 

  • 78.

    Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 15, 405–414 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Yamada, K. et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 282, 37794–37804 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 80.

    Clément, M. et al. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in arabidopsis. Plant Physiol. 156, 1481–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Hou, Q. & Bartels, D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 115, 465–479 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 82.

    Missihoun, T. D. & Kotchoni, S. O. Aldehyde dehydrogenases and the hypothesis of a glycolaldehyde shunt pathway of photorespiration. Plant Signal. Behav. 13, e1449544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Estioko, L. P. et al. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds. AoB Plants 6, plu064 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Brocker, C. et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta 237, 189–210 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 85.

    Sharma, B., Joshi, D., Yadav, P. K., Gupta, A. K. & Bhatt, T. K. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 7, 806 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 86.

    Walters, K. J., Goh, A. M., Wang, Q., Wagner, G. & Howley, P. M. Ubiquitin family proteins and their relationship to the proteasome: a structural perspective. Biochimica et Biophysica Acta Mol. Cell Res. 1695, 73–87 (2004).

    CAS  Article  Google Scholar 

  • 87.

    Liu, Z.-B. et al. A novel membrane-bound E3 ubiquitin ligase enhances the thermal resistance in plants. Plant Biotechnol. J. 12, 93–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  • 88.

    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 89.

    Martin, G. B., Bogdanove, A. J. & Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 90.

    Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 91.

    Lehmann, P. Structure and evolution of plant disease resistance genes. J. Appl. Genet. 43, 403–414 (2002).

    ADS  PubMed  Google Scholar 

  • 92.

    Jeffares, D. C., Tomiczek, B., Sojo, V. & dos Reis, M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. in Parasite Genomics Protocols: Second Edition 65–90 (Springer Fachmedien, 2014). https://doi.org/10.1007/978-1-4939-1438-8_4.

  • 93.

    Andersen, E. J., Ali, S., Byamukama, E., Yen, Y. & Nepal, M. P. Disease resistance mechanisms in plants. Genes 9(7), 339 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • 94.

    IUCN. The IUCN Red List of Threatened Species. Veresion 2019–2 (2019). https://www.iucnredlist.org.

  • 95.

    Federhen, S. The NCBI taxonomy database. Nucl. Acids Res. 40(D1), D136–D143 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 96.

    Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  • 97.

    Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19(1), 1–12 (2018).

    Article  Google Scholar 

  • 98.

    Fuentes-Pardo, A. P. & Ruzzante, D. E. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 99.

    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 100.

    Bragg, J. G., Potter, S., Bi, K. & Moritz, C. Exon capture phylogenomics: efficacy across scales of divergence. Mol. Ecol. Resour. 16, 1059–1068 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 101.

    İpek, A., İpek, M., Ercişli, S. & Tangu, N. A. Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct. Integr. Genomics 17, 493–501 (2017).

    Article  CAS  PubMed  Google Scholar 

  • 102.

    Vatanparast, M., Powell, A., Doyle, J. J. & Egan, A. N. Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Appl. Plant Sci. 6, e1036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 103.

    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).

    Article  PubMed  Google Scholar 

  • 104.

    CITES. Consideration of Proposals for Amendment of Appendices I and II. Convention on International Trade in Endangered Species of Wild Fauna and Flora. (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2017).

  • 105.

    Asian Regional Workshop (Conservation & Sustainable Management of Trees Viet Nam). Dalbergia cochinchinensis. The IUCN Red List of Threatened Species. e.T32625A9719096 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32625A9719096.en.

  • 106.

    Bernal, R., Gradstein, S. & Celis, M. Catálogo de plantas y líquenes de Colombia (Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015).

    Google Scholar 

  • 107.

    World Conservation Monitoring Centre. Dalbergia melanoxylon. The IUCN Red List of Threatened Species 1998. e.T32504A9710439 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32504A9710439.en.

  • 108.

    ILDIS. International Legume Database and Information Service V10.39 (2011).

  • 109.

    Nghia, N. H. Dalbergia oliveri. The IUCN Red List of Threatened Species 1998. e.T32306A9693932 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32306A9693932.en.

  • 110.

    Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. (2009). https://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach