Lambert, N., Strebel, P., Orenstein, W., Icenogle, J. & Poland, G. A. Rubella. Lancet 385, 2297–2307 (2015).
Zhou, Y., Ushijima, H. & Frey, T. K. Genomic analysis of diverse rubella virus genotypes. J. Gen. Virol. 88, 932–941 (2007).
Chen, J.-P., Strauss, J. H., Strauss, E. G. & Frey, T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. J. Virol. 70, 4707–4713 (1996).
Perelygina, L. et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog. 15, e1008080 (2019).
DuBois, R. M. et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493, 552–556 (2013).
McCarthy, M., Lovett, A., Kerman, R. H., Overstreet, A. & Wolinsky, J. S. Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides. J. Virol. 67, 673–681 (1993).
Maton, W. G. Some account of a rash liable to be mistaken for scarlatina. Med. Trans. R. Coll. Physicians 5, 149–165 (1815).
Cooper, L. Z. The history and medical consequences of rubella. Rev. Infect. Dis. 7, S2–S10 (1985).
Gregg, N. M. Congenital cataract following German measles in the mother. Aust. N. Z. J. Ophthalmol. 3, 35–46 (1941).
Parkman, P. D., Buescher, E. L. & Artenstein, M. S. Recovery of rubella virus from army recruits. Proc. Soc. Exp. Biol. Med. 111, 225–230 (1962).
Weller, T. H. & Neva, F. A. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness. Proc. Soc. Exp. Biol. Med. 111, 215–225 (1962).
Swan, C., Tostevin, A. L. & Black, G. H. Final observations on congenital defects in infants following infectious diseases during pregnancy, with special reference to rubella. Med. J. Aust. 2, 889–908 (1946).
Edmunds, W. J., Gay, N. J., Kretzschmar, M., Pebody, R. G. & Wachmann, H. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol. Infect. 125, 635–650 (2000).
Gonzales, J. A. et al. Association of ocular inflammation and rubella virus persistence. JAMA Ophthalmol. 137, 435–438 (2019).
Grant, G. B., Reef, S. E., Patel, M., Knapp, J. K. & Dabbagh, A. Progress in rubella and congenital rubella syndrome control and elimination — worldwide, 2000–2016. MMWR Morb. Mortal. Wkly. Rep. 66, 1256–1260 (2017).
Namuwulya, P. et al. Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012. J. Med. Virol. 86, 2107–2113 (2014).
Kretsinger, K., Strebel, P., Kezaala, R. & Goodson, J. L. Transitioning lessons learned and assets of the global polio eradication initiative to global and regional measles and rubella elimination. J. Infect. Dis. 216, S308–S315 (2017).
Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
Fahr, J. in Mammals of Africa. Vol. IV: Hedgehogs, Shrews and Bats (eds Happold, M. & Happold, D. C. D.) 380–383 (Bloomsbury, 2013).
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
O’Shea, T. J., Bogan, M. A. & Ellison, L. E. Monitoring Trends in Bat Populations of the United States and Territories: Status of the Science and Recommendations for the Future. Information and Technology Report USGS/BRD/ITR–2003–0003 (US Department of the Interior, US Geological Survey Washington, 2003).
Landau, I. & Chabaud, A.-G. Description de Plasmodium cyclopsi n. sp. parasite du Microchirotère Hipposideros cyclops à Makokou (Gabon). Ann. Parasitol. Hum. Comp. 53, 247–253 (1978).
Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl Acad. Sci. USA 110, 17415–17419 (2013).
Michaux, J. R., Libois, R. & Filippucci, M.-G. So close and so different: comparative phylogeography of two small mammal species, the yellow-necked fieldmouse (Apodemus flavicollis) and the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity 94, 52–63 (2005).
Labuda, M. et al. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235, 138–143 (1997).
Klempa, B. et al. Complex evolution and epidemiology of Dobrava–Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158, 521–529 (2013).
Sibold, C. et al. Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J. Med. Virol. 63, 158–167 (2001).
Oktem, I. M. et al. Dobrava–Belgrade virus in Apodemus flavicollis and A. uralensis mice, Turkey. Emerg. Infect. Dis. 20, 121–125 (2014).
Doty, J. B. et al. Isolation and characterization of Akhmeta virus from wild-caught rodents (Apodemus spp.) in Georgia. J. Virol. 93, e00966-19 (2019).
Prpić, J. et al. First evidence of hepatitis E virus infection in a small mammal (yellow-necked mouse) from Croatia. PLoS ONE 14, e0225583 (2019).
Hofmann, J., Renz, M., Meyer, S., von Haeseler, A. & Liebert, U. G. Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res. 96, 123–128 (2003).
Abernathy, E. et al. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009. Virol. J. 10, 32 (2013).
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858 (2015).
Wolinsky, J. S. et al. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J. Virol. 67, 961–968 (1993).
Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).
Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Lond. B 280, 20122753 (2013).
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
Frey, T. K. Neurological aspects of rubella virus infection. Intervirology 40, 167–175 (1997).
Bharadwaj, S. D. et al. Acute encephalitis with atypical presentation of rubella in family cluster, India. Emerg. Infect. Dis. 24, 1923–1925 (2018).
Grant, G. B. et al. Accelerating measles and rubella elimination through research and innovation — findings from the Measles & Rubella Initiative research prioritization process, 2016. Vaccine 37, 5754–5761 (2019).
Struhsaker, T. T. Ecology of an African Rain Forest: Logging in Kibale and the Conflict between Conservation and Exploitation (Univ. Press Florida, 1997).
Plumptre, A. J. et al. The biodiversity of the Albertine Rift. Biol. Conserv. 134, 178–194 (2007).
Ulrich, R. G. et al. Network “rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol. Res. 103, S121–S129 (2008).
Schlegel, M. et al. Molecular identification of small mammal species using novel cytochrome b gene-derived degenerated primers. Biochem. Genet. 50, 440–447 (2012).
Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2015).
Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Version 37.78 https://sourceforge.net/projects/bbmap/ (2014).
Andrews, S. FastQC. A quality control tool for high throughput sequence data. Version 0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Huson, D. H. et al. MEGAN community edition — interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12, e1004957 (2016).
Wylezich, C., Papa, A., Beer, M. & Höper, D. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8, 13108 (2018).
Scheuch, M., Höper, D. & Beer, M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics 16, 69 (2015).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Hobman, T. C. & Gillam, S. In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173, 241–250 (1989).
Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed Walker, J. M.) 571–607 (Humana Press, 2005).
Forth, L. F. & Höper, D. Highly efficient library preparation for ion torrent sequencing using Y-adapters. Biotechniques 67, 229–237 (2019).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
Korber, B. in Computational Analysis of HIV Molecular Sequences Ch. 4 (eds Rodrigo, A. G. & Learn, G. H.) 55–72 (Kluwer Academic Publishers, 2000).
Leskovec, J. SNAP 2.1. http://snap.stanford.edu/snap-2.1/download.html (2013).
Source: Ecology - nature.com