in

Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants

  • 1.

    Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp.(Liliaceae): A review. Plant Diver. 39, 245–262 (2017).

    Google Scholar 

  • 2.

    Mohammadi-Dehcheshmeh, M., Khalighi, A., Naderi, R., Sardari, M. & Ebrahimie, E. Petal: a reliable explant for direct bulblet regeneration of endangered wild populations of Fritillaria imperialis L. Acta Physiol. Plant. 30, 395–399 (2008).

    CAS  Google Scholar 

  • 3.

    Bonyadi, A., Mozaffarpur, S., Azadbakht, M. & Mojahedi, M. The Emergence of Fritillaria imperialis in Written References of Traditional Persian Medicine: a Historical Review. Herb. Med. J. 2, 39–42 (2017).

    Google Scholar 

  • 4.

    van Leeuwen, P. J., Trompert, J. P., & van der Weijden, J. A. The Forcing of Fritillaria imperialis L. In VIII International Symposium on Flowerbulbs 570. (2000).

  • 5.

    Dole, J. M. Research approaches for determining cold requirements for forcing and flowering of geophytes. Hort. Sci. 38, 341–346 (2003).

    Google Scholar 

  • 6.

    Nievola, C. C., Carvalho, C. P., Carvalho, V. & Rodrigues, E. Rapid responses of plants to temperature changes. Temperature. 4, 371–405 (2017).

    Google Scholar 

  • 7.

    Lv, X. et al. The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. J. Exp. Bot. 69, 4127–4139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    K Jha, S., Sharma, M. & K Pandey, G. Role of cyclic nucleotide gated channels in stress management in plants. Curr. Genom. 17, 315–329 (2016).

    Google Scholar 

  • 9.

    Tsai, T. M. et al. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge. Plant Cell Rep. 26, 1899–1908 (2007).

    CAS  PubMed  Google Scholar 

  • 10.

    Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Yoshida, S. & Uemura, M., Alterations of plasma membranes related to cold acclimation of plants, in Low Temperature Stress Physiology in Crops. CRC Press. 41–52 (2018).

  • 12.

    John, R., Anjum, N., Sopory, S., Akram, N. & Ashraf, M. Some key physiological and molecular processes of cold acclimation. Biol. Plant. 60, 603–618 (2016).

    CAS  Google Scholar 

  • 13.

    Renaut, J., Hoffmann, L. & Hausman, J. F. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol. Plant. 125, 82–94 (2005).

    CAS  Google Scholar 

  • 14.

    Jiang, Y. P. et al. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol. Plant. 148, 133–145 (2013).

    CAS  PubMed  Google Scholar 

  • 15.

    Janská, A., Maršík, P., Zelenková, S. & Ovesná, J. Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol. 12, 395–405 (2010).

    PubMed  Google Scholar 

  • 16.

    Ensminger, I., Busch, F. & Huner, N. P. Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol. Plant. 126, 28–44 (2006).

    CAS  Google Scholar 

  • 17.

    Hajihashemi, S., Noedoost, F., Geuns, J. M. C., Djalovic, I., & Siddique, K. H. M. Effect of Cold Stress on Photosynthetic Traits, Carbohydrates, Morphology, and Anatomy in Nine Cultivars of Stevia rebaudiana. Front. Plant Sci. 9 https://doi.org/10.3389/fpls (2018).

  • 18.

    Adams, W. W., Muller, O., Cohu, C. M., & Demmig-Adams, B., Photosystem II efficiency and non-photochemical fluorescence quenching in the context of source-sink balance, in Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer. p. 503–529 (2014).

  • 19.

    Liu, B., Xia, Y.-p, Krebs, S. L., Medeiros, J. & Arora, R. Seasonal responses to cold and light stresses by two elevational ecotypes of Rhododendron catawbiense: A comparative study of overwintering strategies. Env.Exp.l Bot. 163, 86–96 (2019).

    Google Scholar 

  • 20.

    Farooq, M. et al. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiolo. Biochem. 111, 274–283 (2017).

    CAS  Google Scholar 

  • 21.

    Pennycooke, J. C., Cox, S. & Stushnoff, C. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia× hybrida). Environ. Exp. Bot. 53, 225–232 (2005).

    CAS  Google Scholar 

  • 22.

    Wang, W. et al. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol. Biochem. 135, 277–286 (2019).

    CAS  PubMed  Google Scholar 

  • 23.

    Takumi, S., Shimamura, C. & Kobayashi, F. Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiol. Biochem. 46, 205–211 (2008).

    CAS  PubMed  Google Scholar 

  • 24.

    Kobayashi, F. et al. Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol. Plant. 120, 585–594 (2004).

    CAS  PubMed  Google Scholar 

  • 25.

    Fan, W., Deng, G., Wang, H., Zhang, H. & Zhang, P. Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiol. Plant. 154, 560–571 (2015).

    CAS  PubMed  Google Scholar 

  • 26.

    Zhang, Y., et al NHX1 and eIF4A1-stacked transgenic sweetpotato shows enhanced tolerance to drought stress. Plant Cell Rep. 1–12 (2019).

  • 27.

    Barragán, V. et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell. 24, 1127–1142 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Li, J., Jiang, G., Huang, P., Ma, J. & Zhang, F. Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss. Organ Cult. 90, 41 (2007).

    CAS  Google Scholar 

  • 29.

    Martìnez, J. P., Lutts, S., Schanck, A., Bajji, M. & Kinet, J.-M. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? J. Plant Physiol. 161, 1041–1051 (2004).

    PubMed  Google Scholar 

  • 30.

    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS  Google Scholar 

  • 31.

    Somogyi, M. Notes on sugar determination. Journal of biological chemistry. 195, 19–23 (1952).

    CAS  Google Scholar 

  • 32.

    Bates, L., Waldren, R. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).

    CAS  Google Scholar 

  • 33.

    Hajihashemi, S. & Ehsanpour, A. A. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. App. Biochem. Biotechnol. 172, 4038–4052 (2014).

    CAS  Google Scholar 

  • 34.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Google Scholar 

  • 35.

    Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

    CAS  PubMed  Google Scholar 

  • 36.

    Aebi, H. Catalase in vitro. Meth. Enzym. 105, 121–126 (1984).

    CAS  PubMed  Google Scholar 

  • 37.

    Asada, K. Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241 (1992).

    CAS  Google Scholar 

  • 38.

    Flurkey, W. H. & Jen, J. J. Purification of peach polyphenol oxidase in the presence of added protease inhibitors. J. Food Biochem. 4, 29–41 (1980).

    CAS  Google Scholar 

  • 39.

    Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).

    CAS  Google Scholar 

  • 40.

    Singleton, V. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticul. 16, 144–158 (1965).

    CAS  Google Scholar 

  • 41.

    Wagner, G. J. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 64, 88–93 (1979).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Szôllôsi, R. & Varga, I. S. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biol. Szeged. 46, 125–127 (2002).

    Google Scholar 

  • 43.

    Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).

    CAS  PubMed  Google Scholar 

  • 44.

    Hajihashemi, S., Kiarostami, K., Enteshari, S. & Saboora, A. Effect of paclobutrazol on wheat salt tolerance at pollination stage. Russ. J. Plant Physiol. 56, 251–257 (2009).

    CAS  Google Scholar 

  • 45.

    Hajihashemi, S., Geuns, J. M. & Ehsanpour, A. A. Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiol. Plant. 35, 2009–2014 (2013).

    CAS  Google Scholar 

  • 46.

    Si, T., et al Nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat. Front. Plant Sci. 8 (2017).

  • 47.

    Nawaz, Z., Kakar, K. U., Saand, M. A. & Shu, Q.-Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genom. 15, 853 (2014).

    Google Scholar 

  • 48.

    Almadanim, M. C. et al. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. 40, 1197–1213 (2017).

    CAS  PubMed  Google Scholar 

  • 49.

    Dubrovina, A. S., Kiselev, K. V., Khristenko, V. S. & Aleynova, O. A. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J. Plant. Physiol. 185, 1–12 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Vernieri, P., Lenzi, A., Figaro, M., Tognoni, F. & Pardossi, A. How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. J. Exp. Bot. 52, 2199–2206 (2001).

    CAS  PubMed  Google Scholar 

  • 51.

    Palta, J. P. & Weiss, L. S. Ice formation and freezing injury: an overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants, in advances in plant cold hardiness. CRC Press. p. 143–176 (2018).

  • 52.

    Rooy, S. S. B., Salekdeh, G. H., Ghabooli, M., Gholami, M. & Karimi, R. Cold-induced physiological and biochemical responses of three grapevine cultivars differing in cold tolerance. Acta Physiol. Plant. 39, 264 (2017).

    Google Scholar 

  • 53.

    Chen, T. H. Plant adaptation to low temperature stress. Can. J. Plant Pathol. 16, 231–236 (1994).

    Google Scholar 

  • 54.

    Vitasse, Y., Lenz, A. & Körner, C. The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 541 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Hur, J., Jung, K.-H., Lee, C.-H. & An, G. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci. 167, 417–426 (2004).

    CAS  Google Scholar 

  • 56.

    Sasaki, K., Christov, N. K., Tsuda, S. & Imai, R. Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol. 55, 136–147 (2013).

    PubMed  Google Scholar 

  • 57.

    Aroca, R. et al. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci. 165, 671–679 (2003).

    CAS  Google Scholar 

  • 58.

    Boese, S., Wolfe, D. & Melkonian, J. Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ. 20, 625–632 (1997).

    Google Scholar 

  • 59.

    Mishra, S., Alavilli, H., Lee, B.-H., Panda, S. K. & Sahoo, L. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PloS one. 9, e106678 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Dong, H. et al. Overexpression of PbrNHX2 gene, a Na+/H+ antiporter gene isolated from Pyrus betulaefolia, confers enhanced tolerance to salt stress via modulating ROS levels. Plant Sci. 285, 14–25 (2019).

    CAS  PubMed  Google Scholar 

  • 61.

    Campo, S. et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol. 165, 688–704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Lee, D. H. & Lee, C. B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159, 75–85 (2000).

    CAS  PubMed  Google Scholar 

  • 63.

    Oidaira, H., Sano, S., Koshiba, T. & Ushimaru, T. Enhancement of antioxidative enzyme activities in chilled rice seedlings. J. Plant Physiol. 156, 811–813 (2000).

    CAS  Google Scholar 

  • 64.

    Couée, I., Sulmon, C., Gouesbet, G. & El Amrani, A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57, 449–459 (2006).

    PubMed  Google Scholar 

  • 65.

    Demidchik, V. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ. Exp. Bot. 109, 212–228 (2015).

    CAS  Google Scholar 

  • 66.

    Hincha, D. K., Zuther, E. & Heyer, A. G. The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimi. Biophys. Acta-Biomembranes. 1612, 172–177 (2003).

    CAS  Google Scholar 

  • 67.

    Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).

    CAS  PubMed  Google Scholar 

  • 68.

    Haque, M. S., Islam, M. M., Rakib, M. A. & Haque, M. A. A regulatory approach on low temperature induced enzymatic and anti oxidative status in leaf of Pui vegetable (Basella alba). Saudi J. Biol. Sci. 21, 366–373 (2014).

    Google Scholar 

  • 69.

    Li, S.-J. et al. Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress. Acta Physiol. Plant. 37, 159 (2015).

    CAS  Google Scholar 

  • 70.

    Ahmed, N. U., Park, J. I., Jung, H. J., Hur, Y. & Nou, I. S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Func. Int. Genom. 15, 383–394 (2015).

    CAS  Google Scholar 

  • 71.

    Jeon, J., Kim, J. K., Wu, Q. & Park, S. U. Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum). Environ. Exp. Bot. 155, 488–496 (2018).

    CAS  Google Scholar 

  • 72.

    Adams, W. W. III, Stewart, J. J., Cohu, C. M., Muller, O. & Demmig-Adams, B. Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Front. Plant Sci. 7, 1026 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Mai, J. et al. Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg. Trees. 23, 863–874 (2009).

    CAS  Google Scholar 

  • 74.

    Jurczyk, B., Rapacz, M., Pociecha, E. & Kościelniak, J. Changes in carbohydrates triggered by low temperature waterlogging modify photosynthetic acclimation to cold in Festuca pratensis. Environ. Exp. Bot. 122, 60–67 (2016).

    CAS  Google Scholar 

  • 75.

    Roitsch, T. Source-sink regulation by sugar and stress. Curr. Opinion Plant Biol. 2, 198–206 (1999).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora