in

Resource stress and subsistence diversification across societies

  • 1.

    Cochrane, L. & Cafer, A. Does diversification enhance community resilience? A critical perspective. Resilience 6, 129–143 (2018).

    • Article
    • Google Scholar
  • 2.

    African Ecological Futures 2015 (WWF and AfDB Group, 2015).

  • 3.

    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

    • Google Scholar
  • 4.

    Shiferaw, B. et al. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: technological, institutional and policy options. Weather Clim. Extrem. 3, 67–79 (2014).

    • Article
    • Google Scholar
  • 5.

    Berbés-Blázquez, M., Mitchell, C. L., Burch, S. L. & Wandel, J. Understanding climate change and resilience: assessing strengths and opportunities for adaptation in the Global South. Climatic Change 141, 227–241 (2017).

    • Article
    • Google Scholar
  • 6.

    Mijatović, D., Van Oudenhoven, F., Eyzaguirre, P. & Hodgkin, T. The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework. Int. J. Agr. Sustain. 11, 95–107 (2013).

    • Article
    • Google Scholar
  • 7.

    Colson, E. The Harvey Lecture Series. In good years and in bad: food strategies of self-reliant societies. J. Anthropol. Res. 35, 18–29 (1979).

    • Article
    • Google Scholar
  • 8.

    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890 (2015).

    • Article
    • Google Scholar
  • 9.

    Zimmerer, K. S. & de Haan, S. Agrobiodiversity and a sustainable food future. Nat. Plants 3, 17047 (2017).

    • Article
    • Google Scholar
  • 10.

    Brush, S. B. Man’s use of an Andean ecosystem. Hum. Ecol. 4, 147–166 (1976).

    • Article
    • Google Scholar
  • 11.

    Altieri, M. A. & Clara, I. N. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change 140, 33–45 (2017).

    • Article
    • Google Scholar
  • 12.

    Doppler, T., Pichler, S., Röder, B. & Schibler, J. in Economic Archaeology: From Structure to Performance in European Archaeology (eds Kerig, T. & Zimmermann, A.) 163–174 (Habelt, 2013).

  • 13.

    Röder, B., Pichler, S. & Doppler, T. in Economic Archaeology: From Structure to Performance in European Archaeology (eds Kerig, T. & Zimmermann, A.) 177–190 (Habelt, 2013).

  • 14.

    Peregrine, P. in Going Forward by Looking Back: Archaeological Perspectives on Socio-Ecological Crisis, Response, and Collapse Catastrophes in Context Series Vol. 3 (eds Riede, F. & Sheets, P.) Ch. 4 (Berhahn, in the press); https://www.berghahnbooks.com/title/RiedeGoing#toc

  • 15.

    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    • Article
    • Google Scholar
  • 16.

    Krebs, J. R. & Davies, N. B. An Introduction to Behavioural Ecology 48–76 (Blackwell Scientific, 1993).

  • 17.

    Mulder, M. B. & Peter, C. Conservation: Linking Ecology, Economics, and Culture (Princeton Univ. Press, 2005).

  • 18.

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    • Article
    • Google Scholar
  • 19.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).

    • Article
    • Google Scholar
  • 20.

    Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

  • 21.

    Mangels, J., Fiedler, K., Schneider, F. D. & Blüthgen, N. Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodivers. Conserv. 26, 3385–3405 (2017).

    • Article
    • Google Scholar
  • 22.

    Ramiadantsoa, T. I. H. & Otso, O. Responses of generalist and specialist species to fragmented landscapes. Theor. Popul. Biol. 124, 31–40 (2018).

    • Article
    • Google Scholar
  • 23.

    Dennis, R. L. H., Dapporto, L., Fattorini, S. & Cook, L. M. The generalism–specialism debate: the role of generalists in the life and death of species. Biol. J. Linn. Soc. 104, 725–737 (2011).

    • Article
    • Google Scholar
  • 24.

    Hardesty, D. L. The niche concept: suggestions for its use in human ecology. Hum. Ecol. 3, 71–85 (1975).

    • Article
    • Google Scholar
  • 25.

    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    • Article
    • Google Scholar
  • 26.

    Clavel, J. R. J. & Vincent, D. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    • Article
    • Google Scholar
  • 27.

    Devictor, V. R. J. & Frédéric, J. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    • Article
    • Google Scholar
  • 28.

    Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

  • 29.

    Vayda, A. P. & Rappaport, R. A. in Introduction to Cultural Anthropology: Essays in the Scope and Methods of the Science of Man (ed. Clifton, J. A.) 477–497 (Houghton Mifflin, 1968).

  • 30.

    Murdock, G. P. & White, D. R. Standard Cross-Cultural Sample. Ethnology 8, 329–369 (1969).

  • 31.

    Ember, C. R. & Ember, M. Warfare, aggression, and resource problems: cross-cultural codes. Cross Cult. Res. 26, 169–226 (1992).

    • Google Scholar
  • 32.

    Wilson, D. S. in The Evolution of Mind: Fundamental Questions and Controversies (eds Gangestad, S. W. & Simpson, J. A.) 213–220 (Guilford Publications, 2016).

  • 33.

    Ember, C. R. & Ember, M. Resource unpredictability, mistrust, and war: a cross-cultural study. J. Confl. Resolut. 36, 242–262 (1992).

    • Article
    • Google Scholar
  • 34.

    Gelman, A. et al. Bayesian Data Analysis (Chapman and Hall/CRC, 2013).

  • 35.

    McElreath, R. & Jeremy, K. Using multilevel models to estimate variation in foraging returns. Hum. Nat. 25, 100–120 (2014).

    • Article
    • Google Scholar
  • 36.

    Smith, E. A. et al. Anthropological applications of optimal foraging theory: a critical review [and comments and reply]. Curr. Anthropol. 24, 625–651 (1983).

    • Article
    • Google Scholar
  • 37.

    Winterhalder, B. Diet choice, risk, and food sharing in a stochastic environment. J. Anthropol. Archaeol. 5, 369–392 (1986).

    • Article
    • Google Scholar
  • 38.

    Ember, C. R., Abate Adem, T., Brougham, T. & Pitek, E. Predictors of land privatization: cross-cultural tests of defendability and resource stress theory. Am. Anthropol. (in the press).

  • 39.

    Richerson, P. et al. Cultural group selection plays an essential role in explaining human cooperation: a sketch of the evidence. Behav. Brain. Sci. 39, e30 (2016).

    • Article
    • Google Scholar
  • 40.

    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

  • 41.

    Singh, R. B. Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 82, 97–103 (2000).

    • Article
    • Google Scholar
  • 42.

    Murdock, G. P. Ethnographic Atlas (Univ. Pittsburgh Press, 1967).

  • 43.

    Faber-Langendoen, D. et al. Classification and Description of World Formation Types General Technical Report RMRS-GTR-346 (USDA and US Forest Service, 2016).

  • 44.

    Murdock, G. P. et al. Outline of Cultural Materials 6th edn with modifications (Human Relations Area Files, 2008).

  • 45.

    eHRAF World Cultures (Human Relations Area Files, accessed 24 November 2016 to 22 February 2017); http://ehrafworldcultures.yale.edu

  • 46.

    White, D. R. Focused ethnographic bibliography: standard cross-cultural sample. Cross Cult. Res. 23, 1–145 (1989).

    • Google Scholar
  • 47.

    Ember, C. R., Page, H., Jr., O’Leary, T. & Martin, M. M. Computerized Concordance of Cross-Cultural Samples (Human Relations Area Files, 1992).

  • 48.

    Divale, W. T. Codebook of variables for the Standard Cross-Cultural Sample. World Cult. 14, 1–347 (2004).

    • Google Scholar
  • 49.

    Textor, R. B. A Cross-Cultural Summary (HRAF Press, 1967).

  • 50.

    Johnson, A. L. Cross-Cultural analysis of pastoral adaptations and organizational states: a preliminary study. Cross Cult. Res. 36, 151–180 (2002).

    • Article
    • Google Scholar
  • 51.

    Gavin, M. C. et al. The global geography of human subsistence. R. Soc. Open. Sci. 5, 171897 (2018).

    • Article
    • Google Scholar
  • 52.

    Botero, C. A. et al. The ecology of religious beliefs. Proc. Natl Acad. Sci. USA 111, 16784–16789 (2014).

  • 53.

    Van Buuren, S. et al. mice: Multivariate Imputation by Chained Equations. R package v.1 (2017).

  • 54.

    Ember, C. R., Skoggard, I., Ringen, E. J. & Farrer, M. Our better nature: does resource stress predict beyond-household sharing? Evol. Hum. Behav. 39, 380–391 (2018).

  • 55.

    Borgerhoff Mulder, M. Using phylogenetically based comparative methods in anthropology: more questions than answers. Evol. Anthropol. 10, 99–111 (2001).

    • Article
    • Google Scholar
  • 56.

    Ringen, E. J., Duda, P. & Adrian, V. J. The evolution of daily food sharing: a Bayesian phylogenetic analysis. Evol. Hum. Behav. 40, 375–384 (2019).

    • Article
    • Google Scholar
  • 57.

    Duda P. & Zrzavý, J. in Modern Human Origins and Dispersal (eds Sahle, Y. H. R.-C. & Christian, B.) 349–378 (Kerns, 2019).

  • 58.

    Minocher, R., Duda, P. & Adrian, V. J. Explaining marriage patterns in a globally representative sample through socio-ecology and population history: a Bayesian phylogenetic analysis using a new supertree. Evol. Hum. Behav. 40, 176–187 (2019).

    • Article
    • Google Scholar
  • 59.

    Bartlett, J. W., Frost, C. & Carpenter, J. R. Multiple imputation models should incorporate the outcome in the model of interest. Brain 134, e189 (2011).

    • Article
    • Google Scholar
  • 60.

    Collins, L. M., Schafer, J. L. & Chi-Ming, K. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol. Methods 6, 330–351 (2001).

  • 61.

    The R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); http://www.R-project.org

  • 62.

    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    • Article
    • Google Scholar
  • 63.

    Stan Development Team RStan: The R Interface to Stan (2016).

  • 64.

    Bürkner, P. Estimating Phylogenetic Multilevel Models with brms (2019).

  • 65.

    Bürkner, P. Estimating Multivariate Models with brms (2019).

  • 66.

    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw Geographical Maps. R package v.3.3.0 (2018); https://CRAN.R-project.org/package=maps

  • 67.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan 1st edn (Chapman and Hall/CRC, 2016).


  • Source: Ecology - nature.com

    Machine learning helps map global ocean communities

    Lighting the way to better battery technology