in

Rooting behaviour and soil properties in different bamboo species of Western Himalayan Foothills, India

  • 1.

    Lobovikov, M. Paudel, S. Piazza, M. Ren, H. & Wu, J. World Bamboo Resources. A thematic study prepared in the framework of the global forest resources assessment 2005 Non Wood Forest Products 18 (1, 11-33 & 55), Rome, Italy, Food and Agricultural Organization. (2007).

  • 2.

    https://www.inbar.int/global-programmes/

  • 3.

    https://www.inbar.int/tackling-desertification-and-land-degradation/

  • 4.

    Tewari, S., Negi, H. & Kaushal, R. 2019. Status of Bamboo in India. International Journal of Economic Plants 6 (1), 30–39 (2019).

  • 5.

    http://fsi.nic.in/isfr2017/isfr-bamboo-resource-of-the-country-2017.pdf

  • 6.

    Nath, A. J., Lal, R. & Das, A. K. Ethnopedology and soil properties in bamboo (Bambusa sp.) based agroforestry system in North East India. Catena 135, 92–99 (2015a).

  • 7.

    Nath, A. J., Lal, R. & Das., A. K. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system. Sci. Total. Environ. 521–522, 372–379 (2015b).

    • Google Scholar
  • 8.

    https://www.inbar.int/bambooforlandrestoration/

  • 9.

    Gupta, R. K. Bamboo plantations on denuded soils. India Farming. 29, 3–7 (1975).

    • Google Scholar
  • 10.

    Zhou, B., Mao-Yi, Y., Jin-Zhong, X., Xiao-Sheng, Y. & LI, C. Ecological functions of bamboo forest: Research and Application. J. Forestry Research. 16(2), 143–147 (2005).

    • Article
    • Google Scholar
  • 11.

    Sujatha, M. P., Thomas, T. P. & Sankar, S. Influence of reed bamboo (Ochlandra travancorica) on soils of the western ghats in Kerala: A comparative study with adjacent non-reed bamboo areas. Indian. Forester. 134, 403–416 (2008).

    • Google Scholar
  • 12.

    Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecology. 31, 109–124 (1994).

    • Article
    • Google Scholar
  • 13.

    Christanty, L., Mailly, D. & Kimmins, J. P. ‘Without bamboo, the land dies’: biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebunsystem. For. Ecol. Manag. 87(1-3), 75–88 (1996).

    • Article
    • Google Scholar
  • 14.

    Jayasree, K. Renuka, C. & Rugmini, P. Root development in rattans 2. Soil requirements and efficiency of the root systems of Calamus thwaitesii Becc. and Hook, f. and Calamus rotang L. in the seedling stage. (2004).

  • 15.

    Tufekcioglu, A., Raich, J. W., Isenhart, T. M. & Schultz, R. C. Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multi-species riparian buffer in Central Iowa. USA Agrofor. Systems. 44, 163–174 (1999).

    • Article
    • Google Scholar
  • 16.

    Comas, L. H. & Eissenstat, D. M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct. Ecol. 18, 388–397 (2004).

    • Article
    • Google Scholar
  • 17.

    Helmisaari, H. S., Makkonen, K., Kellomaki, S., Valtonen, E. & Malkonen, E. Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For. Ecol. Management. 165(1–3), 317–326 (2002).

    • Article
    • Google Scholar
  • 18.

    Mei, L., Gu, J. C., Zhang, Z. W. & Wang, Z. Q. Responses of fine root mass, length, production and turnover to soil nitrogen fertilization in Larixgmelinii and Fraxinusm and shurica forests in North eastern China. J. For. Research. 15(3), 194–201 (2010).

  • 19.

    Verma, K. S., Kohli, S., Kaushal, R. & Chaturvedi, O. P. Root structure, distribution and biomass in five multipurpose tree species of Western Himalayas. J. Mt. Science. 11(2), 519–525 (2014).

    • Article
    • Google Scholar
  • 20.

    Kaushal, R. et al. Canopy management practices in mulberry: impact on fine and coarse roots. Agrofor. Systems. 93(2), 545–556 (2018).

  • 21.

    Huang, K., Liang, D. & Zeng, Z. Rhizome distribution of Phyllostachys makinio. J. Fujian Forestry Coll. 14(3), 191–194 (1994).

    • Google Scholar
  • 22.

    Wang, K., He, Q. & Weng, P. Investigation and analysis on underground rhizome and root system of Phyllostacys pubescens for shoot and timber. J. Bamboo Research. 19(1), 38–43 (2000).

    • Google Scholar
  • 23.

    Kumar, B. M. & Divakara, B. N. Proximity, clump size and root distribution pattern in bamboo: A case study of Bambusa arundinacea (Retz.) Willd., Poaceae, in the Ultisols of Kerala. India. J. Bamboo Rattan. 1(1), 4358 (2001).

    • Google Scholar
  • 24.

    Divakara, B. N., Kumar, B., Mohan, B. V. & Kamalam, N. V. Bamboo hedgerow systems in Kerala, India: Root distribution and competition with trees for phosphorus. Agrofor. Systems. 51, 189–200 (2001).

    • Article
    • Google Scholar
  • 25.

    Bhol, N. & Nayak, H. Spatial distribution of root and crop yield in a bamboo based agroforestry system. Indian. Forester. 140(6), 135–139 (2014).

    • Google Scholar
  • 26.

    Bhardwaj, S. P. & Singh, P. N. Soils, land capability and land use characteristics of Soil Conservation Research Farm, Dehradun. Central Soil and Water Conservation Research and Training Institute, Dehradun, India, Bull. T-14/D-11(1981).

  • 27.

    Mandal, D. & Jayaprakash, J. Water repellency of soils in the lower Himalayan regions of India: impact of land use. Current Science. 96(1), 148–152 (2009).

    • Google Scholar
  • 28.

    Bohm, W. Methods of studying root systems. Springer-Verlag, Berlin. p 188 (1979).

  • 29.

    Walkley, A. J. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil. Science. 37, 29–38 (1934).

  • 30.

    Bremner, J. M. Nitrogene-total. In. Methods of Soil Analyses, Part III, Chemical Methods et al.) SSSA. 1085–1184, (1996).

  • 31.

    McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties (eds. A.L. Page, R. H. Miller & D. R. Keeney), 2 ed., Agronomy. 9, 199–224 (1982).

  • 32.

    Blake, G. R., K. H. Harte. Bulk density. In: Methods of Soil Analysis part 1. Physical and Mineralogical Methods-Agronomy Monograph. 2nded. American Society of Agronomy and Soil Science Society of America. Madison, WI. 425–442 (1986).

  • 33.

    Yoder, R. E. A direct method of aggregate analysis and a study of the physical nature of erosion losses. J. Am. Soc. Agronomy. 28, 337–351 (1936).

  • 34.

    Booth, C. Introduction to general methods. In: “Methods in Microbiology”. Vol. 4 (ed. Booth, C.), Academic Press, London. 1–47 (1971).

  • 35.

    Tabatabai, M. A. & Bremner, J. M. Use of para-nitrophenyl phosphate for assay of soil phosphatase activity. Soil. Biol. Biochem. 1, 301–30 (1969).

  • 36.

    Casida, L. E., Klein, D. A. & Sanoto, T. Soil dehydrogenase activity. Soil. Sci. 98, 371–376 (1964).

  • 37.

    Eivazi, F. & Tabatabai, M. A. Glucosidases and galactosidases in soils. Soil. Biol. Biochemistry. 20(5), 601–606 (1988).

  • 38.

    Eissenstat, D. M. & Yanai, R. D. Root life span, efficiency, and turnover. In: Waisel Y., Eshel E., Kafkafi U. (eds.) Plant roots: the hidden half. Marcel Dekker, New York. 221–238 (2002).

  • 39.

    Espeleta, J. F., West, J. B. & Donovan, L. A. Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient. Ecology. 90, 1773–1787 (2009).

  • 40.

    Makkonen, K. & Helmisaari, H. S. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. For. Ecol. Management. 102(2–3), 283–290 (1998).

    • Article
    • Google Scholar
  • 41.

    Comas, L. H., Eissenstat, D. M. & Lakso., A. N. Assessing root death and root system dynamics in a study of grape canopy pruning. N. Phytologist. 147(1), 171–178 (2000).

  • 42.

    Hendrick, R. L. & Pregitzer, K. S. The dynamics of fine root length, biomass, and nitrogen content in two northernhardwood ecosystems. Can. J. Forestry Research. 23, 2507–2520 (1993).

    • Article
    • Google Scholar
  • 43.

    Yang, L. Y., Wu, S. T. & Zhang, L. B. Fine root biomass dynamics and carbon storage along a successional gradient in Changbai Mountains, China. Forestry. 83(4), 379–387 (2010).

  • 44.

    Fonseca, W., Alice, F. E. & ReyBenayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. N. Forest. 43(2), 197–211 (2012).

    • Article
    • Google Scholar
  • 45.

    Persson, H. Adaptive tactics and characteristics of tree fine roots. In: Stokes A. (ed.) The supporting roots of trees and woody plants: form, function and physiology. Kluwer, Dordrecht. 337–346 (2000).

  • 46.

    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).

    • Article
    • Google Scholar
  • 47.

    Tripathi, S. K., Singh, K. P. & Singh, P. K. Temporal changes in spatial pattern of fine -root mass and nutrient concentrations in Indian bamboo savannah. App. 2, 229–238 (1999).

    • Google Scholar
  • 48.

    Dhyani, S. K. & Tripathi, R. S. Biomass and production of fine and coarse roots of trees under agrisilvicultural practices in north-east India. Agrofor. Systems. 50, 107–121 (2000).

    • Article
    • Google Scholar
  • 49.

    Liu, D. H. & Li, Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion. J. Soil. Water Conserv. 17(3), 34–37 (2003).

    • Google Scholar
  • 50.

    Myers, R. T., Zak, D. R., White, D. C. & Peacock, A. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil. Sci. Soc. Am. J. 65, 359–367 (2001).

  • 51.

    Burton., A. J., Pregitzer, K. S. & Hendrick, R. L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia. 125, 389–399 (2000).

  • 52.

    White, D. G. & Childers, N. F. Bamboo for controlling soil erosion. J. Am. Soc. Agron. 37, 839–847 (1945).

    • Article
    • Google Scholar
  • 53.

    Shanmughavel, P., Peddappaiah, R. S. & Muthukumar, T. Litter production and nutrient return in Bambusa bambos plantation. J. Sustain. Forestry. 11, 71–82 (2000).

    • Article
    • Google Scholar
  • 54.

    Kumar, B. M., Rajesh, G. & Sudheesh, K. G. Aboveground biomass production and nutrient uptake of thorny bamboo (Bambusa bambos (L.) Voss in the home gardens of Thrissur, Kerala. J. Trop. Agri. 43(1-2), 51–56 (2005).

    • Google Scholar
  • 55.

    Rao, I. V. R. & Jeffery, B. Silviculture Bamboos and their Role in Ecosystem Rehabilitation. Encyclopedia of Forest Sciences. Oxford, Elsevier. (2004).

  • 56.

    Seobi, T., Anderson, S. H., Udawatta, R. P. & Gantzer, C. J. Influence of grass and agroforestry buffer strips on soil hydraulic properties for an Albaqualf. Soil. Sci. Soc. Am. J. 69, 893–901 (2005).

  • 57.

    Udawatta, R., Kremer, P., Robert, J., Garrett, H. E. & Anderson, S. H. Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agriculture, Ecosyst. Environment. 131, 98–104 (2009).

  • 58.

    Mandal, D. Singh, R. Dhyani, S. K. & Dhyani, B. L. Landscape and land use effects on soil resources in a Himalayan watershed. Catena. 81, 203–208 (2010).

  • 59.

    Van Noordwijk & G. Brouwer Review of quantitative root length data in agriculture. In: H. Persson and B. L. McMichael (eds.) Plant Roots and their Environment. Elsevier, Amsterdam, The Netherlands. 515–525 (1991).

  • 60.

    Cadisch, G. P. et al. Catching and competing for mobile nutrients in soils. In: M. vanNoordwijk, G. Cadisch & C. K. Ong (eds.). Below-ground Interactions in Tropical Agroecosystems. CABI publishing, MA. 171–191 (2004).

  • 61.

    Carter, M. R. Researching structural complexity in agricultural soils. Soil. Tillage Res. 79, 1–6 (2004).

  • 62.

    Paudel, B. R., Udawatta, R. P. & Anderson, S. H. Agroforestry and grass buffer effects on soil quality parameters for grazed pasture and row-crop systems. Appl. Soil. Ecology. 48, 125–132 (2011).

    • Article
    • Google Scholar
  • 63.

    Ekwue, E. Effect of organic and fertilizer treatments on soil physical properties and erodibilities. Soil. Tillage Res. 22, 199–209 (1992).

    • Article
    • Google Scholar
  • 64.

    Saha, R., Tomar, J. M. S. & Ghosh, P. K. Evaluation and selection of multipurpose tree for improving soil hydrophysical behaviour under hilly eco-system of north east India. Agrofor. Syst. 69, 239–247 (2007).

    • Article
    • Google Scholar
  • 65.

    Kukal, S. S., Kaur, M. & Bawa, S. S. Erodibility of sandy loam aggregates in relation to their size and initial moisture content under different land uses in semi-arid tropics of India. Arid. Land. Res. Manage. 22, 216–227 (2008).

    • Article
    • Google Scholar
  • 66.

    Sanchez-Maranon, M., Soriano, M., Delgado, G. & Delgado, R. Soil quality in Mediterranean mountain environments: effects of land use change. Soil. Sci. Soc. Am. J. 66, 948–958 (2002).

  • 67.

    Upadhyaya, K., Arunachalam, A. & Arunachalam, K. Microbial biomass and physico-chemical properties of soil under the canopy of BambusabalcooaRoxb. and Bambusa pallida Munro. Indian. J. Soil. Conservation. 31, 152–156 (2003).

    • Google Scholar
  • 68.

    Singh, A. N. & Singh, J. S. Biomass net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Management. 119, 195–207 (1999).

    • Article
    • Google Scholar
  • 69.

    Rao, K. S. & Ramakrishnan, P. S. Role of bamboos in nutrient conservation during secondary succession following slash and burn agriculture (Jhum) in North East India. J. Appl. Ecology. 26, 625–634 (1989).

    • Article
    • Google Scholar
  • 70.

    Venkatesh, M. S., Bhatt, B. P., Kumar, K., Majumdar, B. & Singh., K. Soil properties influenced by some important edible bamboo species in the North Eastern Himalayan region. India. J. Bamboo Rattan. 4, 221–230 (2005).

    • Article
    • Google Scholar
  • 71.

    Singh, K. A. & Rai Arvind, K. Effect of various bamboo plant species on soil properties in humid sub tropics of India. J. Indian. Soc. Soil. Science. 61(4), 365–370 (2013).

    • Google Scholar
  • 72.

    Barrala, M. T., Ariasa, M. & Guerif, J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil. Tillage Res. 46, 261–272 (1998).

    • Article
    • Google Scholar
  • 73.

    Doran, J. W., Elliott, E. W. & Paustian, K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil. Tillage Res. 49, 3–18 (1998).

    • Article
    • Google Scholar
  • 74.

    Allison, V. J., Miller, R. M., Jastrow, J. D., Matamala, R. & Zak, D. R. Changes in soil microbial community structure in a tall grass prairie chronosequence. Soil. Sci. Soc. Am. J. 69, 1412–1421 (2005).

  • 75.

    Kirchner, M. J., Wollum, A. G. & King, L. D. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil. Sci. Soc. Am. J. 57, 1289–1295 (1993).

  • 76.

    Dick, R. P. Breakwell, D. P. & Turco, R. F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran, J. W. Jones, A. J. (Eds.), Methods of Assessing Soil Quality. SSSA special publication 49, Soil Science Society of America. 247–271 (1996).

  • 77.

    Gasper, M. L., Cabello, M. N., Pollero, R. & Aon, M. A. Flourescein diacetate hydrolysis as a measure of fungal biomass in soil. Curr. Microbiol. 42, 339–344 (2001).

    • Article
    • Google Scholar
  • 78.

    Kandeler, E., Physiological and biochemical methods for studying soil biota and their function. In: Paul, E. A. (Ed.), Soil Microbiology, Ecology, and Biochemistry. Elsevier, New York, USA. 53–83 (2007).

  • 79.

    Bergstrom, D. W., Monreal, C. M. & King, D. J. Sensitivity of enzyme activities to conservation practices. Soil. Sci. Soc. Am. J. 62, 1286–1295 (1998).

  • 80.

    Perucci, P., Bonciarelli, U., Bianchi, A. A. & Santilocchi, R. Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biol. Fertil. Soils 24, 311–316 (1997).

  • 81.

    Gomez, E., Bisaro, V. & Conti, M. Potential C-source utilization patterns of bacterial communities as influenced by clearing and land use in a vertic soil of Argentina. Appl. Soil. Ecol. 15, 273–281 (2000).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste