in

Seasonal and spatial dynamics of the planktonic trophic biomarkers in the Strait of Georgia (northeast Pacific) and implications for fish

  • 1.

    Beamish, R. & Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 49, 423–437 (2001).

    • ADS
    • Google Scholar
  • 2.

    Duffy, E. J. & Beauchamp, D. A. Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington. Can. J. Fish. Aquat. Sci. 68, 232–240 (2011).

    • Google Scholar
  • 3.

    Cooney, R. T., Coyle, K. O., Stockmar, E. & Stark, C. Seasonality in surface-layer net zooplankton communities in Prince William Sound, Alaska. Fish. Oceanogr. 10, 97–109 (2001).

    • Google Scholar
  • 4.

    Sommer, U., Stibor, H., Katechakis, A., Sommer, F. & Hansen, T. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. in Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts 11–20 (Springer Netherlands. https://doi.org/10.1007/978-94-017-3190-4_2 (2002).

  • 5.

    Kiørboe, T. T. Phytoplankton Cell Size, and the Structure of Pelagic Food Webs. Adv. Mar. Biol. 29, 1–72 (1993).

    • Google Scholar
  • 6.

    Iverson, S. J., Field, C., Don Bowen, W. & Blanchard, W. Quantitative fatty acid sugnature analysis: a new method of estimating predatory diets. Ecol. Monogr. 74, 211–235 (2004).

    • Google Scholar
  • 7.

    El-Sabaawi, R. W., Sastri, A. R., Dower, J. F. & Mazumder, A. Deciphering the Seasonal Cycle of Copepod Trophic Dynamics in the Strait of Georgia, Canada, Using Stable Isotopes and Fatty Acids. Estuaries and Coasts 33, 738–752 (2010).

    • CAS
    • Google Scholar
  • 8.

    Kainz, M., Arts, M. T. & Mazumder, A. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49, 1784–1793 (2004).

  • 9.

    Arts, M., Ackman, R., … B. H. F., A. & 2001, undefined. & quot; Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution. NRC Res. Press.

  • 10.

    Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74–77 (2000).

  • 11.

    Dalsgaard, J., John, M., Kattner, G. & Müller-Navarra, D. Fatty acid trophic markers in the pelagic marine environment. (2003).

  • 12.

    Parrish, C. C., Pethybridge, H., Young, J. W. & Nichols, P. D. Spatial variation in fatty acid trophic markers in albacore tuna from the southwestern Pacific Ocean—A potential ‘tropicalization’ signal. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 199–207 (2015).

  • 13.

    Sargent, J. R. & Lee, R. F. Biosynthesis of lipds in zooplankton from Saanich Inlet, British Columbia, Canada. Mar. Biol. 31, 15–23 (1975).

    • CAS
    • Google Scholar
  • 14.

    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190 (1988).

  • 15.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    • Google Scholar
  • 16.

    Peterson, B. J. & Fry, B. Stable Isotopes in Ecosystem Studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).

    • Google Scholar
  • 17.

    El-Sabaawi, R., Dower, J. F., Kainz, M. & Mazumder, A. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar. Biol. 156, 225–237 (2009).

    • CAS
    • Google Scholar
  • 18.

    Sardenne, F. et al. Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog. Oceanogr. 146, 75–88 (2016).

    • ADS
    • Google Scholar
  • 19.

    Masson, D. & Peña, A. Chlorophyll distribution in a temperate estuary: The Strait of Georgia and Juan de Fuca Strait. Estuar. Coast. Shelf Sci. 82, 19–28 (2009).

  • 20.

    Healey, M. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can. J. Fish. Aquat. Sci. 68, 718–737 (2011).

    • Google Scholar
  • 21.

    Urawa, S. et al. Pacific Salmon and Steelhead Production in a Changing Climate: Past, Present, and Future. (North Pacific Anadromous Fish Commission (2016).

  • 22.

    Quinn, T. P. The behavior and ecology of Pacific salmon and trout. (UBC Press (2018).

  • 23.

    Beamish, R. J. Ocean Ecology of Pacific Salmon and Trout. (American Fisheries Society (2018).

  • 24.

    DFO. Status of Pacifc Herring (Clupea pallasii) in 2018 and forecast for 2019. DFO Can. Sci. Advis. Secr. Sci. Response 2019/001 (2019).

  • 25.

    Schweigert, J. F. et al. Factors linking Pacific herring (Clupea pallasi) productivity and the spring plankton bloom in the Strait of Georgia, British Columbia, Canada. Prog. Oceanogr. 115, 103–110 (2013).

    • ADS
    • Google Scholar
  • 26.

    Masson, D. & Cummins, P. F. Temperature trends and interannual variability in the Strait of Georgia, British Columbia. Cont. Shelf Res. 27, 634–649 (2007).

    • ADS
    • Google Scholar
  • 27.

    Allen, S. E. & Wolfe, M. A. Hindcast of the timing of the spring phytoplankton bloom in the Strait of Georgia, 1968–2010. Prog. Oceanogr. 115, 6–13 (2013).

    • ADS
    • Google Scholar
  • 28.

    Li, L. et al. Zooplankton communities in the Strait of Georgia, British Columbia, track large-scale climate forcing over the Pacific Ocean. Prog. Oceanogr. 115, 90–102 (2013).

    • ADS
    • Google Scholar
  • 29.

    Mackas, D. et al. Zooplankton time series from the Strait of Georgia: Results from year-round sampling at deep water locations, 1990–2010. Prog. Oceanogr. 115, 129–159 (2013).

    • ADS
    • Google Scholar
  • 30.

    Beamish, R. J. Climate change and northern fish populations. (National Research Council (1995).

  • 31.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    • ADS
    • Google Scholar
  • 32.

    Gower, J. & King, S. Satellite and Buoy obervations of B.C. waters. in State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2015 (eds. Chandler, P. C., King, S. A. & Perry, R. I.) 54–56 (Canadian Technical Report of Fisheries and Aquatic Sciences (2016).

  • 33.

    Harrison, P. J., Fulton, J. D., Taylor, F. J. R. & Parsons, T. R. Review of the Biological Oceanography of the Strait of Georgia: Pelagic Environment. Can. J. Fish. Aquat. Sci. 40, 1064–1094 (1983).

    • Google Scholar
  • 34.

    Nemcek, N., Hennekes, M. & Perry, R. I. Seasonal dynamics of the phytoplankton community in the Salish Sea from HPLC measurements 2015-2018. in State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2018 (eds. Boldt, J. L., Leonard, J. & Chandler, P. C.) 141–145 (Canadian Technical Report of Fisheries and Aquatic Sciences 3314 (2019).

  • 35.

    Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org. Geochem. 29, 1547–1559 (1998).

    • CAS
    • Google Scholar
  • 36.

    Paulsen, M., Clemmesen, C. & Malzahn, A. M. Essential fatty acid (docosahexaenoic acid, DHA) availability affects growth of larval herring in the field. Mar. Biol. 161, 239–244 (2014).

    • CAS
    • Google Scholar
  • 37.

    Strandberg, U. et al. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes. Sci. Total Environ. 536, 858–865 (2015).

  • 38.

    Tocher, D. R. & Dick, J. R. Polyunsaturated fatty acid metabolism in cultured fish cells: Incorporation and metabolism of (n-3) and (n-6) series acids by Atlantic salmon (Salmo salar) cells. Fish Physiol. Biochem. 8, 311–319 (1990).

  • 39.

    Ravet, J. L., Brett, M. T. & Arhonditsis, G. B. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology 91, 180–190 (2010).

    • PubMed
    • Google Scholar
  • 40.

    Chittenden, C. M. et al. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms. Estuar. Coast. Shelf Sci. 200, 335–348 (2018).

    • ADS
    • Google Scholar
  • 41.

    Tucker, S. et al. Seasonal Stock-Specific Migrations of Juvenile Sockeye Salmon along the West Coast of North America: Implications for. Growth. Trans. Am. Fish. Soc. 138, 1458–1480 (2009).

    • Google Scholar
  • 42.

    Therriault, T. W., Hay, D. E. & Schweigert, J. F. Biological overview and trends in pelagic forage fish abundance in the Salish Sea (Strait of Georgia, British Columbia). Mar. Ornithol. 37, 3–8 (2009).

    • Google Scholar
  • 43.

    Bevan, D. Spatiotemporal variability in fatty acid profiles of the copepod Calanus marshallae off the west coast of Vancouver Island. (University of Victoria (2015).

  • 44.

    Deschutter, Y., De Schamphelaere, K., Everaert, G., Mensens, C. & De Troch, M. Seasonal and spatial fatty acid profiling of the calanoid copepods Temora longicornis and Acartia clausi linked to environmental stressors in the North Sea. Mar. Environ. Res. https://doi.org/10.1016/J.MARENVRES.2018.12.008 (2019).

  • 45.

    Miller, J. A. et al. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current. Prog. Oceanogr. 155, 1–12 (2017).

    • ADS
    • Google Scholar
  • 46.

    El-Sabaawi, R., Dower, J., Kainz, M. & Mazumder, A. Interannual variability in fatty acid composition of the copepod Neocalanus plumchrus in the Strait of Georgia, British Columbia. Mar. Ecol. Prog. Ser. 382, 151–161 (2009).

  • 47.

    Gladyshev, M. I., Sushchik, N. N., Tolomeev, A. P. & Dgebuadze, Y. Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish Biol. Fish. 28, 277–299 (2018).

    • Google Scholar
  • 48.

    Daly, E. A., Benkwitt, C. E., Brodeur, R. D., Litz, M. N. C. & Copeman, L. A. Fatty acid profiles of juvenile salmon indicate prey selection strategies in coastal marine waters. Mar. Biol. 157, 1975–1987 (2010).

    • CAS
    • Google Scholar
  • 49.

    Litz, M. N. C., Miller, J. A., Copeman, L. A. & Hurst, T. P. Effects of dietary fatty acids on juvenile salmon growth, biochemistry, and aerobic performance: A laboratory rearing experiment. J. Exp. Mar. Bio. Ecol. 494, 20–31 (2017).

    • CAS
    • Google Scholar
  • 50.

    Evanson, M., Bornhold, E. A., Goldblatt, R. H., Harrison, P. J. & Lewis, A. G. Temporal variation in body composition and lipid storage of the overwintering, subarctic copepod Neocalanus plumchrus in the Strait of Georgia, British Columbia (Canada). Mar. Ecol. Prog. Ser. 192, 239–247 (2000).

  • 51.

    Holt, C. A. Will depleted populations of Pacific salmon recover under persistent reductions in survival and catastrophic mortality events? ICES J. Mar. Sci. 67, 2018–2026 (2010).

    • Google Scholar
  • 52.

    Yamada, Y., Nishida, S., Graeve, M. & Kattner, G. Lipid and fatty acid/alcohol compositions of the subarctic copepods Neocalanus cristatus and Eucalanus bungii from various depths in the Oyashio region, western North Pacific. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 198, 57–65 (2016).

    • CAS
    • Google Scholar
  • 53.

    Fellman, J. B., Hood, E., D’Amore, D. V., Edwards, R. T. & White, D. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95, 277–293 (2009).

    • CAS
    • Google Scholar
  • 54.

    Oliver, A. A. et al. A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia. Biogeosciences 14, 3743–3762 (2017).

  • 55.

    Morrison, J., Foreman, M. G. G. & Masson, D. A method for estimating monthly freshwater discharge affecting British Columbia coastal waters. Atmosphere-Ocean 50, 1–8 (2012).

    • Google Scholar
  • 56.

    Henderson, J. R. & Tocher, D. R. The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research 26, 281–347 (1987).

  • 57.

    Dalsgaard, J., John, M., Kattner, G. & Müller-Navarra, D. Fatty acid trophic markers in the pelagic marine environment. (2003).

  • 58.

    Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).

    • Google Scholar
  • 59.

    Fortier, L., Le Fèvre, J. & Legendre, L. Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. J. Plankton Res. 16, 809–839 (1994).

    • Google Scholar
  • 60.

    LeBlond, P. H., Ma, H., Doherty, F. & Pond, S. Deep and intermediate water replacement in the Strait of Georgia. Atmosphere-Ocean 29, 288–312 (1991).

    • Google Scholar
  • 61.

    Healey, M. C. The distribution, abundance, and feeding habits of juvenile Pacific salmon in Georgia Strait, British Columbia. Fish. Mar. Serv. Tech. Rep. 788, 57 (1978).

    • Google Scholar
  • 62.

    Healey, M. C. Diets and Feeding Rates of Juvenile Pink, Chum, and Sockeye Salmon in Hecate Strait, British Columbia. Trans. Am. Fish. Soc. 120, 303–318 (1991).

    • Google Scholar
  • 63.

    Price, M. H. H., Glickman, B. W. & Reynolds, J. D. Prey Selectivity of Fraser River Sockeye Salmon during Early Marine Migration in British Columbia. Trans. Am. Fish. Soc. 142, 1126–1133 (2013).

    • Google Scholar
  • 64.

    Osgood, G. J. et al. Historical diets of forage fish and juvenile pacific salmon in the strait of Georgia, 1966–1968. Mar. Coast. Fish. 8, 580–584 (2016).

    • Google Scholar
  • 65.

    Puttick, D., Dauk, M., Lozinsky, S. & Smith, M. A. Overexpression of a FAD3 Desaturase Increases Synthesis of a Polymethylene-Interrupted Dienoic Fatty Acid in Seeds of Arabidopsis thaliana L. Lipids 44, 753–757 (2009).

  • 66.

    Abdulkadir, S. & Tsuchiya, M. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J. Exp. Mar. Bio. Ecol. 354, 1–8 (2008).

    • CAS
    • Google Scholar
  • 67.

    Lorrain, A., Savoye, N., Chauvaud, L., Paulet, Y.-M. & Naulet, N. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal. Chim. Acta 491, 125–133 (2003).

    • CAS
    • Google Scholar
  • 68.

    Smyntek, P., Teece, M., Schulz, K. L. & Thackeray, S. J. A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnol. Oceanogr. 52, 2135–2146 (2007).

  • 69.

    Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2 (2013).

  • 70.

    Schlitzer, R. Ocean Data View. odv.awi.de (2018).


  • Source: Ecology - nature.com

    Assessing and Modelling the Efficacy of Lemna paucicostata for the Phytoremediation of Petroleum Hydrocarbons in Crude Oil-Contaminated Wetlands

    Earlier parasite arrival reduces the repeatability of host adaptive radiation