in

Seasonal patterns in stable isotope and fatty acid profiles of southern stingrays (Hypanus americana) at Stingray City Sandbar, Grand Cayman

  • 1.

    O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8(5), e65051. https://doi.org/10.1371/journal.pone.0065051 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074. https://doi.org/10.1371/journal.pbio.1002074 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Zimmerhackel, J. S. et al. How shark conservation in the Maldives affects demand for dive tourism. Tourism Manage. 69, 263–271 (2018).

    Article  Google Scholar 

  • 4.

    Burgin, S. & Hardiman, N. Effects of non-consumptive wildlife-orientated tourism on marine species and prospects for their sustainable management. J. Environ. Manage. 151, 210–220 (2015).

    Article  PubMed  Google Scholar 

  • 5.

    Bruce, B. D. & Bradford, R. W. The effects of shark cage-diving operations on the behaviour and movements of white sharks, Carcharodon carcharias, at the Neptune Islands South Australia. Mar. Biol. 160, 889–907 (2013).

    Article  Google Scholar 

  • 6.

    Corcoran, M. J. et al. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the Southern stingrays Dasyatis americana. PLoS ONE 8(3), e59235. https://doi.org/10.1371/journal.pone.0059235 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Arlettaz, R., Christe, P. & Schaub, M. Food availability as a major driver in the evolution of life-history strategies of sibling species. Ecol. Evol. 7, 4163–4172. https://doi.org/10.1002/ece3.2909 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Huveneers, C. et al. The effects of cage-diving activities on the fine-scale swimming behavior and space use of white sharks. Mar. Biol. 160, 2863–2875 (2013).

    Article  Google Scholar 

  • 9.

    Semeniuk, C. A. D., Bourgeon, S., Smith, S. L. & Rothley, K. D. Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism. Biol. Cons. 142, 1818–1829. https://doi.org/10.1016/j.biocon.2009.03.022 (2009).

    Article  Google Scholar 

  • 10.

    Maljkovic, A. & Côté, I. M. Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol. Conserv. 144, 859–865. https://doi.org/10.1016/j.biocon.2010.11.019 (2011).

    Article  Google Scholar 

  • 11.

    Brena, P. F., Mourier, J., Planes, S. & Clua, E. Shark and ray provisioning: functional insights into behavioral, ecological and physiological responses across multiple scales. Mar. Ecol. Prog. Ser. 538, 273–283 (2015).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78, 1–27. https://doi.org/10.1139/z99-165 (2000).

    Article  Google Scholar 

  • 13.

    Jeanniard-du-Dot, T., Thomas, A. C., Cherel, Y., Trites, A. W. & Guinet, C. Combining hard-part and DNA analyses of scats with biologging and stable isotopes can reveal different diet compositions and feeding strategies within a fur seal population. Mar. Ecol. Prog. Ser. 584, 1–16 (2017).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Wetherbee, B.M., Cortés, E. Food consumption and feeding habits In Sharks and Their Relatives I (eds Musick, J.A., Heithaus, M., & Carrier, J.C.) 225–246 (CRC Press, 2004).

  • 15.

    Dehn, L.-A. et al. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol. 30(2), 167–181 (2006).

    Article  Google Scholar 

  • 16.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS  CAS  Article  Google Scholar 

  • 17.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45, 341–351 (1981).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).

    Article  Google Scholar 

  • 19.

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).

    CAS  Google Scholar 

  • 20.

    Polito, M. J. et al. Integrating stomach content and stable isotope analyses to quantify the diets of Pygoscelid penguins. PLoS ONE 6, e26642. https://doi.org/10.1371/journal.pone.0026642 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Couturier, L. I. E. et al. Stable isotope and signature fatty acid analyses suggest reef manta rays feed on demersal zooplankton. PLoS ONE 8(10), e77152. https://doi.org/10.1371/journal.pone.0077152 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Käkelä, A. et al. Fatty acid signatures and stable isotopes as dietary indicators in North Sea seabirds. Mar. Ecol. Prog. Ser. 342, 291–301 (2007).

    ADS  Article  Google Scholar 

  • 23.

    Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS ONE 7, e30492. https://doi.org/10.1371/journal.pone.0030492 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Watt, C. A. & Ferguson, S. H. Fatty acid and stable isotopes (δ13C and δ15N) reveal temporal changes in narwhal (Monodon monoceros) diet linked to migration patterns. Mar. Mammal Sci. 31, 21–44 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Vander Zanden, M.J. & Rasmussen, J.B. Variation in delta N-15 and delta C-13 trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061-2066 (2001).

  • 27.

    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190 (1988).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Mackenzie, K. M. et al. Locations of marine animals revealed by carbon isotopes. Sci. Rep. 1, 1–6. https://doi.org/10.1038/srep00021 (2011).

    CAS  Article  Google Scholar 

  • 29.

    DeNiro, M.J. & Epstein, S. You are what you eat (plus a few ‰): the carbon isotope cycle in food chains. Geol. Soc. Amer., Abstr. Programs 8, 834–835 (1976).

  • 30.

    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mammal Sci. 22(4), 759–801 (2006).

    Article  Google Scholar 

  • 31.

    Ackman, R.G. Fish lipids in Advances in Fish Science And Technology (ed. Connell, J.J.) 86–103 (Fishing News Books Ltd., 1980).

  • 32.

    Tocher, D. R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107–184. https://doi.org/10.1080/713610925 (2003).

    CAS  Article  Google Scholar 

  • 33.

    McMeans, B. C., Arts, M. T. & Fisk, A. T. Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): implications for diet reconstruction. J. Exp. Mar. Biol. Ecol. 429, 55–63. https://doi.org/10.1016/j.jembe.2012.06.017 (2012).

    CAS  Article  Google Scholar 

  • 34.

    Bigelow, H., & Schroeder, W. Fishes of the Western North Atlantic, Part 2. Sawfishes, Guitarfishes, Skates, Rays and Chimaeroids. 1–588 (Yale University Press, 1953).

  • 35.

    Aguiar, A., Valentin, J. & Rosa, R. S. Habitat use by Dasyatis americana in a south-western Atlantic oceanic island. J. Mar. Biol. Assoc. 89, 1147–1152 (2009).

    Article  Google Scholar 

  • 36.

    Snelson, F. F. Jr. & Williams, S. E. Notes on the occurrence, distribution, and biology of elasmobranch fishes in the Indian River Lagoon system Florida. Estuaries 4, 110–120 (1981).

    Article  Google Scholar 

  • 37.

    Gilliam, D. S. & Sullivan, K. M. Diet and feeding habits of the Southern stingray Dasyatis americana in the Central Bahamas. Bull. Mar. Sci. 52(3), 1007–1013 (1993).

    Google Scholar 

  • 38.

    Bowman, R., Stillwell, C., Michaels, W. & Grosslein, M. Food of Northwest Atlantic fishes and two common species of squid. NOAA Technical Memorandum NMFS-NE 155, 1–137 Reprint at https://pdfs.semanticscholar.org/c013/400022949952cc0f261fa71c76195c173e04.pdf (2000).

  • 39.

    Vaudo, J. J. et al. Characterization and monitoring of one of the world’s most valuable ecotourism animals, the southern stingray at Stingray City Grand Cayman. Mar. Freshwater Res. 69, 144–154 (2018).

    Article  Google Scholar 

  • 40.

    Nelson, M. Swim with the rays: a guide to Stingray City, Grand Cayman 37 (Blueline Press, Colorado, 1995).

    Google Scholar 

  • 41.

    Shackley, M. ‘Stingray city’-managing the impact of underwater tourism in the Cayman Islands. J. Sustain. Tour. 6, 328–338 (1998).

    Article  Google Scholar 

  • 42.

    Semeniuk, C. A. D., Speers-Roesch, B. & Rothley, K. D. Using fatty-acid profile analysis as an ecologic indicator in the management of tourist impacts on marine wildlife: a case of stingray-feeding in the Caribbean. Environ. Manag. 40, 665–677 (2007).

    ADS  Article  Google Scholar 

  • 43.

    Semeniuk, C. A. D. & Rothley, K. D. Costs of group-living for a normally solitary forager: effects of provisioning tourism on southern stingrays Dasyatis americana. Mar. Ecol. Prog. Ser. 357, 271–282 (2008).

    ADS  Article  Google Scholar 

  • 44.

    Abdi, H. The bonferonni and Šidák corrections for multiple comparisons in Encyclopedia of Measurements and Statistics (ed Salkind, N.L.) 1–9 (Sage Publishing, 2007).

  • 45.

    Dale, J. J., Wallsgrove, N. J., Popp, B. N. & Holland, K. N. Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Mar. Ecol. Prog. Ser. 433, 221–236 (2011).

    ADS  Article  Google Scholar 

  • 46.

    Tilley, A., López-Angarita, J. & Turner, J. R. Diet reconstruction and resource partitioning of a Caribbean marine mesopredator using stable isotope Bayesian modeling. PLoS ONE 8(11), e79560. https://doi.org/10.1371/journal.pone.0079560 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Hobson, K. A. & Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18 (1992).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Galván, D. E., Jañez, J. & Irigoyen, A. J. Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae). J. Fish. Biol. 89, 1258–1270. https://doi.org/10.1111/jfb.13024 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Ohkouchi, N. et al. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113, 150–174. https://doi.org/10.1016/j.orggeochem.2017.07.009 (2017).

    CAS  Article  Google Scholar 

  • 50.

    Smith, K. & Herrnkind, W. Predation on early juvenile spiny lobsters Panulirus argus (Latreille): influence of size and shelter. J. Exp. Mar. Biol. Ecol. 157, 3–18 (1992).

    Article  Google Scholar 

  • 51.

    Randall, J. Food Habits of Reef Fishes of the West Indies. University of Hawaii (1967).

  • 52.

    Newsome, D., Lewis, A. & Moncrieff, D. Impacts and risks associated with developing, but unsupervised stingray tourism at Hameline Bay Western Australia. Int. J. Tour. Res. 6, 305–323. https://doi.org/10.1002/jtr.491 (2004).

    Article  Google Scholar 

  • 53.

    Hobson, K. A., Alisauskas, R. T. & Clark, R. G. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95, 388–394 (1993).

    Article  Google Scholar 

  • 54.

    Oelbermann, K. & Sheu, S. Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130, 337–344 (2002).

    ADS  Article  PubMed  Google Scholar 

  • 55.

    Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5(21), 4829–4839. https://doi.org/10.1002/ece3.1738 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Doi, H. F., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633. https://doi.org/10.1098/rsos.170633 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Doucett, R. R., Booth, R. K., Power, G. & McKinley, R. S. Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can. J. Fish. Aquat. Sci. 56, 2172–2180 (1999).

    Article  Google Scholar 

  • 58.

    Cherel, Y., Hobson, K. A., Bailleul, F. & Groscolas, R. Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86, 2881–2888 (2005).

    Article  Google Scholar 

  • 59.

    Kempster, B. et al. Do stable isotopes reflect nutritional stress? Results from a laboratory experiment on song sparrows. Oecologia 151, 365–371 (2007).

    ADS  Article  PubMed  Google Scholar 

  • 60.

    Logan, J. M. & Lutcavage, M. E. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244 (2010).

    CAS  Article  Google Scholar 

  • 61.

    Wyatt, A. S. J. et al. Enhancing insights into foraging specialization in the world’s largest fish using a multi-tissue, multi-isotope approach. Ecol. Monogr. 89, e01339. https://doi.org/10.1002/ecm.1339 (2019).

    Article  Google Scholar 

  • 62.

    Williams, C.T., Buck, C.L., Sears, J. & Kitaysky, A.S. 2007. Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153, 11–18 (2007).

  • 63.

    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Rajapakse, N., Mendis, E., Byun, H.-G. & Kim, S.-K. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16, 562–569 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Hussey, N. E. et al. Expanded trophic complexity among large sharks. Food Webs 4, 1–7 (2015).

    Article  Google Scholar 

  • 66.

    Bosley, K. L., Witting, D. A., Chambers, R. C. & Wainright, S. C. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 236, 233–240 (2002).

    ADS  Article  Google Scholar 

  • 67.

    Fry, B. & Arnold, C. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54, 200–204 (1982).

    ADS  Article  PubMed  Google Scholar 

  • 68.

    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).

    Article  Google Scholar 

  • 69.

    Kim, S. L., del Rio, C. M., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 215, 2495–2500 (2012).

    Article  PubMed  Google Scholar 

  • 70.

    Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J. Anim. Ecol. 84, 861–870. https://doi.org/10.1111/1365-2656.12326 (2015).

    Article  PubMed  Google Scholar 

  • 71.

    Hussey, N. E. et al. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. J. Fish Biol. 80(5), 1449–1484. https://doi.org/10.1111/j.1095-8649.2012.03251.x (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    MacNeil, M. A., Drouillard, K. G. & Fisk, A. T. Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can. J. Fish Aquat. Sci. 63, 345–353. https://doi.org/10.1139/f05-219 (2006).

    CAS  Article  Google Scholar 

  • 73.

    Caut, S., Jowers, M., Michel, L., Lepoint, G. & Fisk, A. Diet- and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Mar. Ecol. Prog. Ser. 492, 185–198 (2013).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Miller, T. W., Brodeur, R. D. & Rau, G. H. Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol. Oceanogr. 53, 1493–1503 (2008).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Lytle, J. S. & Lytle, T. F. Fatty acid and cholesterol content of sharks and rays. J. Food Compos. Anal. 7, 110–118 (1994).

    CAS  Article  Google Scholar 

  • 76.

    Jangaard, P. M. & Ackman, R. G. Lipids and component fatty acids of the Newfoundland squid, Illex illecebrosus (Le Sueur). J. Fish. Res. Board Can. 22(1), 131–137. https://doi.org/10.1139/f65-012 (1965).

    CAS  Article  Google Scholar 

  • 77.

    Kirsch, P. E., Iverson, S. J., Bowen, W. D., Kerr, S. R. & Ackman, R. G. Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can. J. Fish Aquat. Sci. 55, 1378–1386. https://doi.org/10.1139/f98-019 (1998).

    CAS  Article  Google Scholar 

  • 78.

    Phillips, K. L., Jackson, G. D. & Nichols, P. D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 215, 179–189 (2001).

    ADS  CAS  Article  Google Scholar 

  • 79.

    Premarathna, A. D. et al. Nutritional analysis of some selected fish and crab meats and fatty acid analysis of oil extracted from Portunus pelagicus. IJSRST 4, 197–201 (2015).

    Google Scholar 

  • 80.

    Javaheri Baboli, J., Velayatzahed, M., Roomiani, L. & Khoramadadi, A. Effects of sex and tissue fatty acid composition in the meat of blue swimming crab (Portunus pelagicus) from the Persian Gulf, Iran. Iran J. Fish. Sci. 15, 818–826 (2016).

  • 81.

    Arai, T., Amalina, R. & Bachok, Z. Similarity in the feeding ecology of parrotfish (Scaridae) in coral reef habitats of the Malaysian South China Sea, as revealed by fatty acid signatures. Biochem. Syst. Ecol. 59, 85–90. https://doi.org/10.1016/j.bse.2015.01.011 (2015).

    CAS  Article  Google Scholar 

  • 82.

    Ayas, D. & Ozogul, Y. The effects of seasonal changes on fat and fatty acid contents of mantis shrimp (Eurogosquilla massavensis). Adv. Food Sci. 34, 164–167 (2012).

    CAS  Google Scholar 

  • 83.

    Balzano, M., Pacetti, D., Lucci, P., Fiorini, D. & Frega, N. G. Bioactive fatty acids in mantis shrimp, crab and caramote prawn: their content and distribution among the main lipid classes. J. Food Compos. Anal. 59, 88–94 (2017).

    CAS  Article  Google Scholar 

  • 84.

    Lytle, J. S., Lytle, T. F. & Ogle, J. T. Polyunsaturated fatty acid profiles as a comparative tool in assessing maturation diets of Penaeus vannamei. Aquaculture 89, 287–299 (1990).

    CAS  Article  Google Scholar 

  • 85.

    Pethybridge, H., Daley, R., Virtue, P. & Nicols, P. Lipid composition and partitioning of deepwater chondrichthyans: inferences of feeding ecology and distribution. Mar. Biol. 157, 1367–1384 (2010).

    CAS  Article  Google Scholar 

  • 86.

    Pethybridge, P., Daley, R. K. & Nichols, P. D. Diet of demersal sharks and chimeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409, 290–299. https://doi.org/10.1016/j.jembe.2011.09.009 (2011).

    Article  Google Scholar 

  • 87.

    Beckmann, C. L., Mitchell, J. G., Stone, D. A. J. & Huveneers, C. A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni. J. Exp. Mar. Biol. Ecol. 448, 10–18. https://doi.org/10.1016/j.jembe.2013.06.009 (2013).

    CAS  Article  Google Scholar 

  • 88.

    Beckmann, C. L., Mitchell, J. G., Stone, D. A. & Huveneers, C. Inter-tissue differences in fatty acid incorporation as a result of dietary oil manipulation in Port Jackson sharks (Heterodontus portusjacksoni). Lipids 49, 577–590 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 89.

    Gibson, R. A. Australian fish – an excellent source of both arachidonic acid and ω-3 polyunsaturated fatty acids. Lipids 18, 743–752 (1983).

    CAS  Article  PubMed  Google Scholar 

  • 90.

    Dunstan, G. A., Sinclair, A. J., O’Dea, K. & Naughton, J. M. The lipid content and fatty acid composition of various marine species from southern Australian coastal waters. Comp. Biochem. Physiol. B 91, 165–169. https://doi.org/10.1016/0305-0491(88)90130-7 (1988).

    Article  Google Scholar 

  • 91.

    Ballantyne, J.S. Jaws: the inside story. The metabolism of elasmobranch fishes. Comp. Biochem. Physiol. B 118, 703–742 (1997).

  • 92.

    Wood, C. M., Walsh, P. J., Kajimura, M., McClelland, G. B. & Chew, S. F. The influence of feeding and fasting on plasma metabolites in the dogfish shark (Squalus acanthias). Comp. Biochem. Physiol. A. 155, 435–444 (2010).

    Article  CAS  Google Scholar 

  • 93.

    Meyer, L., Pethybridge, H., Nichols, P. D., Beckmann, C. & Huveneers, C. Abiotic and biotic drivers of fatty acid tracers in ecology: a global analysis of chondrichthyan profiles. Funct. Ecol. 33, 1–13. https://doi.org/10.1111/1365-2435.13328 (2019).

    Article  Google Scholar 

  • 94.

    Preston, T. & Owens, N. J. P. Interfacing an automatic elemental analyser with an isotope ratio mass spectrometer: the potential for fully automated total nitrogen and nitrogen-15 analysis. Analyst 108, 971–977 (1983).

    ADS  CAS  Article  Google Scholar 

  • 95.

    Kim, S. L. & Koch, P. L. Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ. Biol. Fish. 95, 53–63 (2012).

    Article  Google Scholar 

  • 96.

    Folch, J., Lees, M. & Sloane-Stanly, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed