in

Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system

  • 1.

    Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

  • 2.

    Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).

  • 3.

    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

  • 4.

    Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

  • 5.

    Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Lond. B 364, 1483–1489 (2009).

  • 6.

    Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    • Article
    • Google Scholar
  • 7.

    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).

  • 8.

    Auld, S. K. J. R. et al. Variation in costs of parasite resistance among natural host populations. J. Evol. Biol. 26, 2479–2486 (2013).

  • 9.

    Duffy, M. A. et al. Ecological context influences epidemic size and parasite-driven evolution. Science 335, 1636–1638 (2012).

  • 10.

    Travis, J. et al. in Eco-Evolutionary Dynamics Vol. 50 (eds Moya-Laraño, J. et al.) 1–40 (Academic Press, 2014).

  • 11.

    Schaffner, L. R. et al. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat. Ecol. Evol. 3, 1351–1358 (2019).

  • 12.

    De Meester, L. et al. Analysing eco-evolutionary dynamics: the challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).

    • Article
    • Google Scholar
  • 13.

    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

  • 14.

    Papkou, A. et al. The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proc. Natl Acad. Sci. USA 116, 923–928 (2019).

  • 15.

    Saccheri, I. & Hanski, I. Natural selection and population dynamics. Trends Ecol. Evol. 21, 341–347 (2006).

  • 16.

    Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).

    • Article
    • Google Scholar
  • 17.

    Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).

  • 18.

    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).

    • Article
    • Google Scholar
  • 19.

    Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15362–15367 (2009).

  • 20.

    van den Bosch, R., Schlinger, E. I., Hall, J. C. & Puttler, B. Studies on succession, distribution and phenology of imported parasites of Therioaphis trifolii (Monell) in southern California. Ecology 45, 602–621 (1964).

    • Article
    • Google Scholar
  • 21.

    Mackauer, M. Growth and developmental interactions in some aphids and their hymenopterous parasites. J. Insect Physiol. 32, 275–280 (1986).

    • Article
    • Google Scholar
  • 22.

    Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).

  • 23.

    Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).

  • 24.

    Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long-term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).

    • Article
    • Google Scholar
  • 25.

    Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).

    • Article
    • Google Scholar
  • 26.

    Ives, A. R. & Settle, W. H. Metapopulation dynamics and pest control in agricultural systems. Am. Nat. 149, 220–246 (1997).

    • Article
    • Google Scholar
  • 27.

    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).

    • Article
    • Google Scholar
  • 28.

    Oliver, K. M. & Higashi, C. H. V. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr. Opin. Insect Sci. 32, 1–7 (2019).

  • 29.

    Martinez, A. J., Doremus, M. R., Kraft, L. J., Kim, K. L. & Oliver, K. M. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J. Anim. Ecol. 87, 464–477 (2018).

  • 30.

    Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).

  • 31.

    Martinez, A. J., Kim, K. L., Harmon, J. P. & Oliver, K. M. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE 11, e0154670 (2016).

  • 32.

    Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).

  • 33.

    Doremus, M. R. & Oliver, K. M. Aphid heritable symbiont exploits defensive mutualism. Appl. Environ. Microbiol. 83, AEM.03276-16 (2017).

  • 34.

    Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).

    • Article
    • Google Scholar
  • 35.

    Losey, J. E., Ives, A. R., Harmon, J., Brown, C. & Ballantyne, F. A polymorphism maintained by opposite patterns of parasitism and predation. Nature 388, 269–272 (1997).

  • 36.

    Harmon, J., Losey, J. & Ives, A. R. The use of color vision in Coccinellidae. Oecologia 115, 287–292 (1998).

  • 37.

    Langley, S. A., Tilmon, K. J., Cardinale, B. J. & Ives, A. R. Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae) alters individual fixed preferences for pea aphid color morphs. Oecologia 150, 172–179 (2006).

  • 38.

    Tomasetto, F., Tylianakis, J. M., Reale, M., Wratten, S. & Goldson, S. L. Intensified agriculture favors evolved resistance to biological control. Proc. Natl Acad. Sci. USA 114, 3885–3890 (2017).

  • 39.

    Hufbauer, R. A. & Roderick, G. K. Microevolution in biological control: mechanisms, patterns, and processes. Biol. Control 35, 227–239 (2005).

    • Article
    • Google Scholar
  • 40.

    Mills, N. J. Rapid evolution of resistance to parasitism in biological control. Proc. Natl Acad. Sci. USA 114, 3792–3794 (2017).

  • 41.

    Vorburger, C. & Perlman, S. J. The role of defensive symbionts in host–parasite coevolution. Biol. Rev. Camb. Philos. Soc. 93, 1747–1764 (2018).

  • 42.

    Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).

    • Article
    • Google Scholar
  • 43.

    Desneux, N. et al. Intraspecific variation in facultative symbiont infection among native and exotic pest populations: potential implications for biological control. Biol. Control 116, 27–35 (2018).

    • Article
    • Google Scholar
  • 44.

    Kach, H., Mathe-Hubert, H., Dennis, A. B. & Vorburger, C. Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids. Evol. Appl. 11, 220–230 (2018).

  • 45.

    Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).

  • 46.

    Barbosa, P. in Conservation Biological Control (ed. Barbosa, P.) 39–54 (Academic Press, 1998).

  • 47.

    Snyder, W. E., Chang, G. C. & Prasad, R. P. in Ecology of Predator–Prey Interactions (eds Barbosa, P. & Castellanos, I.) 324–343 (Oxford Univ. Press, 2004).

  • 48.

    Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).

    • Article
    • Google Scholar
  • 49.

    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).

  • 50.

    Lynn-Bell, N. L., Strand, M. R. & Oliver, K. M. Bacteriophage acquisition restores protective mutualism. Microbiology 165, 985–989 (2019).

  • 51.

    Henry, L. M. et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr. Biol. 23, 1713–1717 (2013).

  • 52.

    Gehrer, L. & Vorburger, C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol. Lett. 8, 613–615 (2012).

  • 53.

    Li, Q., Fan, J., Sun, J., Wang, M.-Q. & Chen, J. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377 (2018).

  • 54.

    Moran, N. A. & Dunbar, H. E. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl Acad. Sci. USA 103, 12803–12806 (2006).

  • 55.

    Brandt, J. W., Chevignon, G., Oliver, K. M. & Strand, M. R. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc. R. Soc. B. 284, 20171925 (2017).

  • 56.

    Martinez, A. J., Weldon, S. R. & Oliver, K. M. Effects of parasitism on aphid nutritional and protective symbioses. Mol. Ecol. 23, 1594–1607 (2014).

  • 57.

    Russell, J. A. et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol. Ecol. 22, 2045–2059 (2013).

  • 58.

    Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102, 16919–16926 (2005).

  • 59.

    Ives, A. R. et al. Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius ervi. Am. Nat. 154, 652–673 (1999).

  • 60.

    Ives, A. R. & Dakos, V. Detecting dynamical changes in nonlinear time series using locally linear state-space models. Ecosphere 3, art58 (2012).

    • Article
    • Google Scholar
  • 61.

    Harvey, A. C. Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge Univ. Press, 1989).

  • 62.

    Rauwald, K. S. & Ives, A. R. Biological control in disturbed agricultural systems and the rapid re-establishment of parasitoids. Ecol. Appl. 11, 1224–1234 (2001).

    • Article
    • Google Scholar
  • 63.

    Olson, A. C., Ives, A. R. & Gross, K. Spatially aggregated parasitism on pea aphids, Acyrthosiphon pisum, caused by random foraging behavior of the parasitoid Aphidius ervi. Oikos 91, 66–76 (2000).

    • Article
    • Google Scholar
  • 64.

    Caswell, H. Matrix Population Models (Sinauer Associates, 1989).

  • 65.

    Caillaud, M. C. & Losey, J. E. Genetics of color polymorphism in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 10, 95 (2010).


  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean