in

Short- and long-term impacts of variable hypoxia exposures on kelp forest sea urchins

  • 1.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

  • 2.

    Kwiatkowski, L. & Orr, J. C. Diverging seasonal extremes for ocean acidification during the twenty-first centuryr. Nat. Clim. Chang. 8, 141–145 (2018).

  • 3.

    Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).

  • 4.

    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    • Article
    • Google Scholar
  • 5.

    Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 1–14 (2016).

  • 6.

    Grantham, B. A. et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429, 749–754 (2004).

  • 7.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).

  • 8.

    Low, N. H. N. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).

  • 9.

    Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789 (2002).

  • 10.

    Somero, G. N. Comparative physiology: a “crystal ball” for predicting consequences of global change. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1–R14 (2011).

  • 11.

    Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science. 283, 2095–2097 (1999).

  • 12.

    Sanford, E. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr. Comp. Biol. 42, 881–891 (2002).

  • 13.

    Kroeker, K. J., Micheli, F. & Gambi, M. C. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat. Clim. Chang. 3, 156–159 (2013).

  • 14.

    Dufault, A. M., Cumbo, V. R., Fan, T.-Y. & Edmunds, P. J. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc. R. Soc. B Biol. Sci. 279, 2951–2958 (2012).

  • 15.

    Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O. & Levin, L. A. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Glob. Chang. Biol. 20, 754–764 (2014).

  • 16.

    Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).

  • 17.

    Mangan, S., Urbina, M. A., Findlay, H. S., Wilson, R. W. & Lewis, C. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proc. R. Soc. B Biol. Sci. 284, 20171642 (2017).

  • 18.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–8 (2017).

  • 19.

    Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62, 2864–2878 (2017).

  • 20.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1–12 (2018).

  • 21.

    Woodson, C. B. et al. Harnessing marine microclimates for climate change adaptation and marine conservation. Conserv. Lett. 1–9, https://doi.org/10.1111/conl.12609 (2018).

    • Article
    • Google Scholar
  • 22.

    Boch, C. A. et al. Local oceanographic variability influences the performance of juvenile abalone under climate change. Sci. Rep. 1–12, https://doi.org/10.1038/s41598-018-23746-z (2018).

  • 23.

    Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).

  • 24.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science. 359, eaam7240 (2018).

  • 25.

    Chan, F. et al. Emergence of anoxia in the California Current Large Marine Ecosystem. Science 319, 920 (2008).

  • 26.

    Booth, J. A. T. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).

  • 27.

    Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Chang. Biol. 16, 1213–1228 (2010).

  • 28.

    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science. 345, 77–80 (2014).

  • 29.

    Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

  • 30.

    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS One 7, e40832 (2012).

  • 31.

    Booth, J. A. T. et al. Patterns and potential drivers of declining oxygen content along the southern California coast. Limnol. Oceanogr. 59, 1127–1138 (2014).

  • 32.

    Watanabe, J. M. & Harrold, C. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71, 125–141 (1991).

  • 33.

    Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).

    • Article
    • Google Scholar
  • 34.

    Beas-Luna, R. & Ladah, L. B. Latitudinal, seasonal, and small-scale spatial differences of the giant kelp, Macrocystis pyrifera, and an herbivore at their southern range limit in the northern hemisphere. Bot. Mar. 57, 73–83 (2014).

    • Article
    • Google Scholar
  • 35.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 15050 (2019).

  • 36.

    Beas-Luna, R. et al. An online database for informing ecological network models: http://kelpforest.ucsc.edu. PLoS One 9, e109356 (2014).

  • 37.

    Bickel, T. O. & Perrett, C. Precise determination of aquatic plant wet mass using a salad spinner. Can. J. Fish. Aquat. Sci. 73, 1–4 (2016).

    • Article
    • Google Scholar
  • 38.

    Gonor, J. J. Reproductive cycles in oregon populations of the echinoid, Strongylocentrotus purpuratus (Stimpson). I. Annual gonad growth and ovarian gametogenic cycles. J. Exp. Mar. Bio. Ecol. 12, 45–64 (1973).

    • Article
    • Google Scholar
  • 39.

    Kenner, M. & Lares, M. Size at first reproduction of the sea urchin Strongylocentrotus purpuratus in a central California kelp forest. Mar. Ecol. Prog. Ser. 76, 303–306 (1991).

  • 40.

    Reinardy, H. C., Emerson, C. E., Manley, J. M. & Bodnar, A. G. Tissue regeneration and biomineralization in sea urchins: Role of Notch signaling and presence of stem cell markers. PLoS One 10, 1–15 (2015).

    • Google Scholar
  • 41.

    Giese, A. C., Farmanfarmaian, A., Hilden, S. & Doezema, P. Respiration during the reproductive cycle in the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. 130, 192–201 (1966).

  • 42.

    Webster, S. K. & Giese, A. C. Oxygen consumption of the purple sea urchin with special reference to the reproductive cycle. Biol. Bull. 148, 165–180 (1975).

  • 43.

    Siikavuopio, S. I., Dale, T., Mortensen, A. & Foss, A. Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266, 112–116 (2007).

    • Article
    • Google Scholar
  • 44.

    Chabot, D. & Claireaux, G. Environmental hypoxia as a metabolic constraint on fish: The case of Atlantic cod, Gadus morhua. Mar. Pollut. Bull. 57, 287–294 (2008).

  • 45.

    Thomas, P., Rahman, M. S., Picha, M. E. & Tan, W. Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico. Mar. Pollut. Bull. 101, 182–192 (2015).

  • 46.

    Jeppesen, R. et al. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries and Coasts 41, 299–299 (2018).

    • Article
    • Google Scholar
  • 47.

    Lundquist, C. J. & Botsford, L. W. Estimating larval production of a broadcast spawner: the influence of density, aggregation, and the fertilization Allee effect. Can. J. Fish. Aquat. Sci. 68, 30–42 (2011).

    • Article
    • Google Scholar
  • 48.

    Strathmann, R. R. The role of spines in preventing structural damage to echinoid tests. Paleobiology 7, 400–406 (1981).

    • Article
    • Google Scholar
  • 49.

    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).

    • Article
    • Google Scholar
  • 50.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B 307 (2014).

  • 51.

    Tegner, M. J. & Levin, L. A. Spiny lobsters and sea urchins: Analysis of a predator-prey interaction. J. Exp. Mar. Bio. Ecol. 73, 125–150 (1983).

    • Article
    • Google Scholar
  • 52.

    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).

  • 53.

    Steen, J. B. Comparative aspects of the respiratory gas exchange of sea urchins. Acta Physiol. Scand. 63, 164–170 (1965).

  • 54.

    Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).

  • 55.

    Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: An organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).

    • Article
    • Google Scholar
  • 56.

    Kurihara, H., Yin, R., Nishihara, G. N., Soyano, K. & Ishimatsu, A. Effect of ocean acidification on growth, gonad development and physiology of the sea urchin Hemicentrotus pulcherrimus. Aquat. Biol. 18, 281–292 (2013).

    • Article
    • Google Scholar
  • 57.

    Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Eutrophication offsets increased sea urchin grazing on seagrass aused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485, 37–46 (2013).

  • 58.

    Carey, N., Harianto, J. & Byrne, M. Sea urchins in a high CO2 world: partitioned effects of body-size, ocean warming and acidification on metabolic rate. J. Exp. Biol. 219, 1178–1186 (2016).

  • 59.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

  • 60.

    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

  • 61.

    Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Chang. 5, 12–14 (2015).


  • Source: Ecology - nature.com

    Early high rates and disparity in the evolution of ichthyosaurs

    Oxygen lost and found