in

Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau

  • 1.

    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    • Article
    • Google Scholar
  • 2.

    Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol. Monogr. 86, 146–171 (2016).

    • Article
    • Google Scholar
  • 3.

    Immerzeel, W. W. & Bierkens, M. F. P. Asia’s water balance. Nat. Geosci. 5, 841–842 (2012).

    • Article
    • Google Scholar
  • 4.

    Yang, M., Wang, X., Pang, G., Wan, G. & Liu, Z. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes. Earth-Sci. Rev. 190, 353–369 (2019).

    • Article
    • Google Scholar
  • 5.

    Ran, Y., Li, X. & Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12, 595–608 (2018).

    • Article
    • Google Scholar
  • 6.

    Jin, H. J., Chang, X. L. & Wang, S. L. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. J. Geophys. Res. Earth Surface 112, F02S09 (2007).

    • Article
    • Google Scholar
  • 7.

    Vonk, J. E. & Gustafsson, Ö. Permafrost-carbon complexities. Nat. Geosci. 6, 675–676 (2013).

    • Article
    • Google Scholar
  • 8.

    Street, L. E. et al. Redox dynamics in the active layer of an Arctic headwater catchment; examining the potential for transfer of dissolved methane from soils to stream water. J. Geophys. Res. Biogeosci. 121, 2776–2792 (2016).

    • Article
    • Google Scholar
  • 9.

    Lamarche-Gagnon, G. et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77 (2019).

    • Article
    • Google Scholar
  • 10.

    Wik, M., Crill, P. M., Varner, R. K. & Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

    • Article
    • Google Scholar
  • 11.

    Natchimuthu, S. et al. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnol. Oceanogr. 61, S13–S26 (2016).

    • Article
    • Google Scholar
  • 12.

    Mattson, M. D. & Likens, G. E. Air pressure and methane fluxes. Nature 347, 718–719 (1990).

    • Article
    • Google Scholar
  • 13.

    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    • Article
    • Google Scholar
  • 14.

    Wilhelm, E., Battino, R. & Wilcock, R. J. Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977).

    • Article
    • Google Scholar
  • 15.

    Wang, Y. et al. Selective leaching of dissolved organic matter from alpine permafrost soils on the Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 123, 1005–1016 (2018).

    • Article
    • Google Scholar
  • 16.

    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    • Article
    • Google Scholar
  • 17.

    Wang, Y. et al. Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai-Tibet Plateau: importance of source and permafrost degradation. Biogeosciences 15, 6637–6648 (2018).

    • Article
    • Google Scholar
  • 18.

    Yang, Y. et al. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China. J. Hydrol. 569, 359–372 (2019).

    • Article
    • Google Scholar
  • 19.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    • Article
    • Google Scholar
  • 20.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    • Article
    • Google Scholar
  • 21.

    Zhang, S. et al. Ammonia oxidizers in high-elevation rivers of the Qinghai-Tibetan Plateau display distinctive distribution patterns. Appl. Environ. Microbiol. 85, e01701–e01719 (2019).

    • Google Scholar
  • 22.

    Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214 (2010).

    • Article
    • Google Scholar
  • 23.

    Fasching, C., Ulseth, A. J., Schelker, J., Steniczka, G. & Battin, T. J. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol. Oceanogr. 61, 558–571 (2016).

    • Article
    • Google Scholar
  • 24.

    Bastviken, D. et al. Methane emissions from pantanal, South America, during the low water season: toward more comprehensive sampling. Environ. Sci. Technol. 44, 5450–5455 (2010).

    • Article
    • Google Scholar
  • 25.

    Liu, S., Lu, X. X., Xia, X., Yang, X. & Ran, L. Hydrological and geomorphological control on CO2 outgassing from low-gradient large rivers: an example of the Yangtze River system. J. Hydrol. 550, 26–41 (2017).

    • Article
    • Google Scholar
  • 26.

    Romeijn, P., Comer-Warner, S. A., Ullah, S., Hannah, D. M. & Krause, S. Streambed organic matter controls on carbon dioxide and methane emissions from streams. Environ. Sci. Technol. 53, 2364–2374 (2019).

    • Article
    • Google Scholar
  • 27.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    • Article
    • Google Scholar
  • 28.

    Shelley, F., Ings, N., Hildrew, A. G., Trimmer, M. & Grey, J. Bringing methanotrophy in rivers out of the shadows. Limnol. Oceanogr. 62, 2345–2359 (2017).

    • Article
    • Google Scholar
  • 29.

    Sawakuchi, H. O. et al. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Glob. Change Biol. 22, 1075–1085 (2016).

    • Article
    • Google Scholar
  • 30.

    Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008).

    • Article
    • Google Scholar
  • 31.

    Xia, X. et al. The cycle of nitrogen in river systems: sources, transformation, and flux. Environ. Sci. Process. Impacts 20, 863–891 (2018).

    • Article
    • Google Scholar
  • 32.

    Abril, G., Commarieu, M.-V. & Guérin, F. Enhanced methane oxidation in an estuarine turbidity maximum. Limnol. Oceanogr. 52, 470–475 (2007).

    • Article
    • Google Scholar
  • 33.

    Campeau, A., Lapierre, J.-F., Vachon, D. & del Giorgio, P. A. Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem. Cycles 28, 57–69 (2014).

    • Article
    • Google Scholar
  • 34.

    Wallin, M. B. et al. Carbon dioxide and methane emissions of Swedish low-order streams—a national estimate and lessons learnt from more than a decade of observations. Limnol. Oceanogr. Lett. 3, 156–167 (2018).

    • Article
    • Google Scholar
  • 35.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    • Article
    • Google Scholar
  • 36.

    Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    • Article
    • Google Scholar
  • 37.

    Marcé, R. et al. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Sci. Rev. 188, 240–248 (2019).

    • Article
    • Google Scholar
  • 38.

    Flury, S. & Ulseth, A. J. Exploring the sources of unexpected high methane concentrations and fluxes from Alpine headwater streams. Geophys. Res. Lett. 46, 6614–6625 (2019).

    • Article
    • Google Scholar
  • 39.

    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).

    • Article
    • Google Scholar
  • 40.

    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2019-128 (2019).

  • 41.

    Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

  • 42.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    • Article
    • Google Scholar
  • 43.

    Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2017).

    • Article
    • Google Scholar
  • 44.

    Chen, H. et al. The carbon stock of alpine peatlands on the Qinghai-Tibetan plateau during the Holocene and their future fate. Quat. Sci. Rev. 95, 151–158 (2014).

    • Article
    • Google Scholar
  • 45.

    Johnson, K. M., Hughes, J. E., Donaghay, P. L. & Sieburth, J. M. Bottle-calibration static head space method for the determination of methane dissolved in seawater. Anal. Chem. 62, 2408–2412 (1990).

    • Article
    • Google Scholar
  • 46.

    Sawakuchi, H. O. et al. Methane emissions from Amazonian rivers and their contribution to the global methane budget. Glob. Change Biol. 20, 2829–2840 (2014).

    • Article
    • Google Scholar
  • 47.

    Lorke, A. et al. Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences 12, 7013–7024 (2015).

    • Article
    • Google Scholar
  • 48.

    Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).

    • Article
    • Google Scholar
  • 49.

    Steinberg, L. M. & Regan, J. M. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl. Environ. Microbiol. 75, 4435–4442 (2009).

    • Article
    • Google Scholar
  • 50.

    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009–e00015 (2016).

    • Article
    • Google Scholar
  • 51.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    • Article
    • Google Scholar
  • 52.

    Kharab, A. & Guenther, R. An Introduction to Numerical Methods: A MATLAB Approach (CRC Press, 2018).

  • 53.

    Verma, J. P. Data Analysis in Management with SPSS Software (Springer Science & Business Media, 2013).


  • Source: Ecology - nature.com

    Technique could enable cheaper fertilizer production

    Millennial-scale hydroclimate control of tropical soil carbon storage