in

Single-virus genomics and beyond

  • 1.

    Koonin, E. V. The wonder world of microbial viruses. Expert Rev. Anti Infect. Ther. 8, 1097–1099 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Yong, E. I Contain Multitudes: The Microbes Within Us and A Grander View of Life (Ecco, 2016).

  • 3.

    Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). This is a massive metagenomic study on global viral diversity and distribution and host specificity of viruses. A total of 125,000 partial DNA virus genomes are discovered.

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007). This is a fundamental must-read review of the general role of viruses in marine ecosystems.

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Abedon, S. T. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses (Cambridge Univ. Press, 2008).

  • 8.

    Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Enav, H., Kirzner, S., Lindell, D., Mandel-Gutfreund, Y. & Béjà, O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat. Commun. 9, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003). This is a comprehensive review addressing a fundamental question in microbial ecology on the difficulty of culturing most microorganisms in the laboratory and how this bias impacts microbial discovery.

    PubMed  Article  CAS  Google Scholar 

  • 15.

    Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).

    PubMed  Article  Google Scholar 

  • 16.

    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This is a pioneering, comprehensive metagenomic study on global marine viral diversity from hundreds of samples collected during the Tara expedition.

    PubMed  Article  CAS  Google Scholar 

  • 18.

    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686 (2019). This article describes the most comprehensive genome database of uncultured viruses recovered by metagenomics from different ecosystems, including the human body, with more than 700,000 viral genome fragments.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).

    PubMed  Article  Google Scholar 

  • 21.

    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013). The authors address a hot topic in viral ecology (that is, how big the viral diversity in nature is) and estimate the total number of different viral proteins, which is a proxy for quantifying the number of different existing viruses.

    PubMed  Article  Google Scholar 

  • 23.

    Rohwer, F. Global phage diversity. Cell 113, 141 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Suttle, C. A. Environmental microbiology: viral diversity on the global stage. Nat. Microbiol. 1, 1–2 (2016).

    Article  CAS  Google Scholar 

  • 25.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 1–9 (2018). The article reports the discovery of several relevant giant viruses, including one with a genome of 2.4 Mb, using metagenomics and a method that is similar to those used in SVG, but in this case targeting multiple sets of 100 viruses, instead of single-virus particles.

    Article  CAS  Google Scholar 

  • 27.

    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).

    Article  CAS  Google Scholar 

  • 29.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Chatterjee, A., Sicheritz-Pontén, T., Yadav, R. & Kondabagil, K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci. Rep. 9, 1–9 (2019).

    Article  CAS  Google Scholar 

  • 35.

    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 1–13 (2017). This is a pioneering reference high-throughput SVG study that unveils extremely abundant and ubiquitous uncultured marine viruses overlooked for years by current state-of-the-art, standard metagenomic-based studies.

    Article  CAS  Google Scholar 

  • 37.

    Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017). This in silico study performs a through bioinformatic comparison of different tools used commonly in viral metagenomics and aims to provide useful recommendations and standards for the scientific community.

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Aguirre de Cárcer, D., Angly, F. E. & Alcamí, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics 15, 1–12 (2014).

    Article  CAS  Google Scholar 

  • 39.

    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015). The screening of sequencing data from hundreds of single cells obtained from seawater unveils virus–host interactions in different ecologically important bacterial and archaeal groups.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014, e03125 (2014).

    Article  CAS  Google Scholar 

  • 42.

    Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011). This is the first report of SCG in uncultivated widespread microbial eukaryotes, showing complex viral interactions and metabolic insights into phycobiliphyte groups.

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Castillo, Y. M. et al. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol. Ecol. 28, 4272–4289 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Benites, L. F. et al. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Phil. Trans. R. Soc. B 374, 20190089 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Brussaard, C. P. D., Noordeloos, A. A. M., Sandaa, R. A., Heldal, M. & Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319, 280–291 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Martinez-Garcia, M., Martinez-Hernandez, F. & Martínez Martínez, J. Single-virus genomics: studying uncultured viruses, one at a time. Ref. Module Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.21497-0 (2020). The authors provide methodological details and protocols for implementing SVG to complement other existing methods in viral ecology.

    Article  Google Scholar 

  • 52.

    Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).

    Article  Google Scholar 

  • 54.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015). This review is recommended for readers who would like an introduction to recent technological advances in marine virology.

    CAS  PubMed  Article  Google Scholar 

  • 55.

    De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903-17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).

    CAS  Article  Google Scholar 

  • 59.

    Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, 1–17 (2019).

    Article  Google Scholar 

  • 60.

    Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Ponsero, A. J. & Hurwitz, B. L. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10, 806 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Kavagutti, V. S., Andrei, A. Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 1–15 (2019).

    Article  Google Scholar 

  • 69.

    Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019). This pioneering study successfully combines long-read and short-read sequencing data to improve viral metagenomic assemblies and shows the potential of Nanopore sequencing data to advance virus discovery.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Chow, C. E. T., Winget, D. M., White, R. A., Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Mizuno, C. M., Ghai, R., Saghaï, A., López-García, P. & Rodriguez-Valera, F. Genomes of abundant and widespread viruses from the deep ocean. mBio 7, e00805–e00816 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 1–11 (2019).

    CAS  Article  Google Scholar 

  • 80.

    Lasken, R. S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 81.

    López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep. 7, 1–14 (2017).

    Article  CAS  Google Scholar 

  • 82.

    Mangot, J. F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  • 83.

    Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 1–10 (2018).

    CAS  Article  Google Scholar 

  • 84.

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). This article is an excellent example of the power of single-cell technologies to provide biological insights into uncultured microorganisms.

    CAS  PubMed  Article  Google Scholar 

  • 85.

    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7, 137–147 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 87.

    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 1–10 (2017). The authors use flow cytometry to sort uncultured single viruses and they amplify their genomes with a new variant of an efficient Φ29 enzyme, which is commonly used in SCG and SVG. This study is another SVG example targeting uncultured viruses.

    Article  CAS  Google Scholar 

  • 89.

    Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 8, 2503–2516 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017). This reference SVG study targets for the first time uncultured giant viruses in nature, which are commonly ignored with standard metagenomic techniques.

    PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    de la Cruz Peña, M. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018). This is the first study on SVG applied to the human virome. The authors implement this novel technology, combined with metagenomics, in salivary human samples and discover important, abundant phages.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 92.

    Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011). This is the first report showing the feasibility of SVG as a new tool for virus discovery. The authors successfully use this technology to sequence several single sorted virus particles of viral isolates T4 and λ of E. coli.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Holmfeldt, K., Odić, D., Sullivan, M. B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Pospichalova, V. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 4, 25530 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 95.

    Giesecke, C. et al. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry A 91, 1104–1114 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 96.

    Schmidt, H. & Hawkins, A. R. Single-virus analysis through chip-based optical detection. Bioanalysis 8, 867–870 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Brussaard, C., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol. 11, 102–109 (2010).

    Article  Google Scholar 

  • 98.

    Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 99.

    Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 100.

    Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 102.

    Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). This is one of the most comprehensive technical and scientific reviews of SCG technologies of unicellular and multicellular organisms, and discusses how these technologies have enabled new discoveries in multiple fields from microbiology to cancer or immunology.

    CAS  PubMed  Article  Google Scholar 

  • 103.

    Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014). This study uses technologies similar to those used in SVG to discover giant viruses and other relevant uncultured viruses from a sorted pool of marine uncultured viruses.

    PubMed  Article  CAS  Google Scholar 

  • 104.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 106.

    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 107.

    Hercher, M., Mueller, W. & Shapiro, H. M. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27, 350–352 (1979).

    CAS  PubMed  Article  Google Scholar 

  • 108.

    Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765-17 (2017).

    Article  Google Scholar 

  • 109.

    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 110.

    Brum, J. R. et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc. Natl Acad. Sci. USA 113, 2436–2441 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 111.

    Alonso-Sáez, L., Morán, X. A. G. & Clokie, M. R. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 12, 2100–2102 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 112.

    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 113.

    McMullen, A., Martinez‐Hernandez, F. & Martinez‐Garcia, M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ. Microbiol. Rep. 11, 855–860 (2019).

    CAS  PubMed  Google Scholar 

  • 114.

    Fukuda, R., Ogawa, H., Nagata, T. & Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. B 374, 20190086 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 116.

    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 117.

    Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 118.

    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 119.

    Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 120.

    Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 121.

    Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 122.

    Ruokola, P. et al. Raman spectroscopic signatures of echovirus 1 uncoating. J. Virol. 88, 8504–8513 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 123.

    Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 124.

    Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 125.

    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 126.

    Machtinger, R., Laurent, L. C. & Baccarelli, A. A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193 (2016).

    CAS  PubMed  Google Scholar 

  • 127.

    Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 128.

    Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 129.

    Jacob, F. & Wollman, E. L. Viruses and genes. Sci. Am. 204, 93–107 (1961).

    CAS  PubMed  Article  Google Scholar 

  • 130.

    Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 131.

    Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).

    CAS  Article  Google Scholar 

  • 132.

    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 133.

    Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 134.

    Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 1–8 (2014).

    Article  CAS  Google Scholar 

  • 135.

    Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019). This is probably one of the most comprehensive SCG studies within the context of the human gut microbiota, and unveils a total of 363 unique host–phage pairings, expanding the known host–phage network of the gut microbiota.

    PubMed  Article  CAS  Google Scholar 

  • 136.

    Munson-Mcgee, J. H. et al. A virus or more in (nearly) every cell: Ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 137.

    Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 138.

    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 139.

    Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 140.

    Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 141.

    Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 142.

    Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 1–14 (2019).

    Article  CAS  Google Scholar 

  • 143.

    Guo, Q., Duffy, S. P., Matthews, K., Islamzada, E. & Ma, H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Sci. Rep. 7, 1–11 (2017).

    Article  CAS  Google Scholar 

  • 144.

    Liu, W. et al. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci. Adv. 5, eaax4761 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 145.

    Lasken, R. S. Single-cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 510–516 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 146.

    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 147.

    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 148.

    Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 149.

    McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 150.

    Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 151.

    Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 152.

    Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 153.

    Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 154.

    Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 155.

    Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 1–12 (2014).

    Article  CAS  Google Scholar 

  • 156.

    Watson, M., Schnettler, E. & Kohl, A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29, 1902–1903 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 157.

    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 158.

    Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 1–15 (2019).

    CAS  Article  Google Scholar 

  • 159.

    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 160.

    Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 161.

    Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14, e0222271 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 162.

    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  CAS  Google Scholar 

  • 163.

    Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 164.

    Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).

    Article  Google Scholar 

  • 165.

    Maxwell, K. L. & Frappier, L. Viral proteomics. Microbiol. Mol. Biol. Rev. 71, 398–411 (2007).

    CAS  Article  Google Scholar 

  • 166.

    Lum, K. K. & Cristea, I. M. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev. Proteom. 13, 325–340 (2016).

    CAS  Article  Google Scholar 

  • 167.

    Cheng, W. & Schimert, K. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. Proc. SPIE 10723, 107233B (2018).

    Google Scholar 

  • 168.

    Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 169.

    Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 170.

    Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 171.

    Subramaniam, S., Bartesaghi, A., Liu, J., Bennett, A. E. & Sougrat, R. Electron tomography of viruses. Curr. Opin. Struct. Biol. 17, 596–602 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 172.

    Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 173.

    Martínez Martínez, J., Schroeder, D. C., Larsen, A., Bratbak, G. & Wilson, W. H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 73, 554–562 (2007).

    Article  CAS  Google Scholar 

  • 174.

    Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17–28 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests