in

Soil salinity and aridity specify plague foci in the United States of America

  • 1.

    Rascovan, N. et al. Emergence and Spread of Basal Lineages of Yersinia pestis during the Neolithic Decline. Cell 176, 295–305.e10 (2019).

  • 2.

    Andrades Valtueña, A. et al. The Stone Age Plague and Its Persistence in Eurasia. Curr. Biol. 27, 3683–3691.e8 (2017).

  • 3.

    Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).

  • 4.

    Spyrou, M. A. et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat Commun 9, 2234 (2018).

  • 5.

    Wagner, D. M. et al. Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis. Lancet Infect Dis 14, 319–326 (2014).

  • 6.

    Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

  • 7.

    Schmid, B. V. et al. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc. Natl. Acad. Sci. USA 112, 3020–3025 (2015).

  • 8.

    Gómez, J. M. & Verdú, M. Network theory may explain the vulnerability of medieval human settlements to the Black Death pandemic. Sci Rep 7, 43467 (2017).

  • 9.

    Bos, K. I. et al. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. Elife 5, e12994 (2016).

  • 10.

    Yersin, A. [Bubonic plague in Hong Kong. 1894]. Rev Med Suisse Romande 114, 393–395 (1994).

  • 11.

    Organization, W. H. International health regulations (2005). (World Health Organization, 2008).

  • 12.

    Bertherat, E. & Bertherat, É. Plague around the world in 2019. WEEKLY EPIDEMIOLOGICAL RECORD 4 (2019).

  • 13.

    Gage, K. L. & Kosoy, M. Y. Natural history of plague: perspectives from more than a century of research. Annu. Rev. Entomol. 50, 505–528 (2005).

  • 14.

    Abbott, R. C. & Rocke, T. E. Plague: U.S. Geological Survey Circular 1372, 79 p., plus appendix. https://pubs.usgs.gov/circ/1372/ (2012).

  • 15.

    Bertherat, E. G. Plague in Madagascar:overview of the 2014-2015 epidemic season. Wkly. Epidemiol. Rec. 90, 250–252 (2015).

    • PubMed
    • Google Scholar
  • 16.

    Nikitin, A. I. et al. [Epizootological characteristics of the natural foci of plague in China: a review of literature]. Med Parazitol (Mosk) 51–58 (2009).

  • 17.

    Fang, X. et al. [Ecological-geographic landscapes of natural plague foci in China VII. Typing of natural plague foci]. Zhonghua Liu Xing Bing Xue Za Zhi 33, 1144–1150 (2012).

    • PubMed
    • Google Scholar
  • 18.

    Shen, X. et al. Complete genome sequences of Yersinia pestis from natural foci in China. J. Bacteriol. 192, 3551–3552 (2010).

  • 19.

    Wang, P. et al. Ten years of surveillance of the Yulong plague focus in China and the molecular typing and source tracing of the isolates. PLoS neglected tropical diseases 12, e0006352 (2018).

  • 20.

    Zhang, Y. et al. Phenotypic and molecular genetic characteristics of Yersinia pestis at an emerging natural plague focus, Junggar Basin, China. The American journal of tropical medicine and hygiene 98, 231–237 (2018).

  • 21.

    Du, H.-W., Wang, Y., Zhuang, D.-F. & Jiang, X.-S. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation. Infect Dis Poverty 6, 124 (2017).

  • 22.

    Galdan, B., Baatar, U., Molotov, B. & Dashdavaa, O. Plague in Mongolia. Vector Borne Zoonotic Dis. 10, 69–75 (2010).

  • 23.

    Aikimbajev, A. et al. Plague in Kazakhstan at the present time. Przegl Epidemiol 57, 593–598 (2003).

    • PubMed
    • Google Scholar
  • 24.

    Bykov, L. T., Tsoi, D. C. & Rakhimov, K. R. Results of using the serological method of epidemiological investigation of plague foci in the Muyunkum and Eastern Kyzylkum deserts in 1978-1982. J Hyg Epidemiol Microbiol Immunol 29, 369–376 (1985).

  • 25.

    Lowell, J. L. et al. Phenotypic and molecular characterizations of Yersinia pestis isolates from Kazakhstan and adjacent regions. Microbiology (Reading, Engl.) 153, 169–177 (2007).

  • 26.

    Korzun, V. M. et al. [Change in the habitat of Yersinia pestis in the Gorno-Altaisk natural focus of plague]. Med Parazitol (Mosk) 11–19 (2014).

  • 27.

    Kotti, B. K. [Value of fleas in the natural foci of plague in the caucasus]. Med Parazitol (Mosk) 28–30 (2011).

  • 28.

    Koshel’, E. I. et al. [A study on the taxonomy of soil amoebas from Caspian plague foci based on an analysis of ribosomal operon sequences]. Genetika 51, 39–45 (2015).

    • PubMed
    • Google Scholar
  • 29.

    Cherchenko, I. I. & Dyatlov, A. I. Broader investigation into the external environment of the specific antigen of the infectious agent in epizootiological observation and study of the structure of natural foci of plague. J Hyg Epidemiol Microbiol Immunol 20, 221–228 (1976).

  • 30.

    Asvarov, B. M., -M Gaziev, S. G., Khasaev, S. M., Gruba, V. P. & Grizhebovskiĭ, G. M. [The epizootic situation on the territories with natural foci of plague in Chechen Republic and in the Republic of Ingushetia]. Zh. Mikrobiol. Epidemiol. Immunobiol. 66–68 (2001).

  • 31.

    Eroshenko, G. A. et al. Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan. PLoS ONE 12, e0187230 (2017).

  • 32.

    Sariyeva, G. et al. Current Status of the Sari-Dzhas Natural Focus of Plague, Kyrgyzstan: Epizootic Activity and Marmot Population. Vector Borne Zoonotic Dis. 18, 524–532 (2018).

  • 33.

    Mostafavi, E. et al. A Field Study of Plague and Tularemia in Rodents, Western Iran. Vector Borne Zoonotic Dis. 17, 247–253 (2017).

  • 34.

    Gascuel, F., Choisy, M., Duplantier, J.-M., Débarre, F. & Brouat, C. Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus. PLoS Comput. Biol. 9, e1003039 (2013).

  • 35.

    Moore, S. M. et al. Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission. Parasit Vectors 8, 11 (2015).

  • 36.

    Eisen, R. J. et al. Flea diversity as an element for persistence of plague bacteria in an East African plague focus. PLoS ONE 7, e35598 (2012).

  • 37.

    Janssens, P. G. & Pattyn, S. R. [Plague in Zaire]. Verh. K. Acad. Geneeskd. Belg. 56, 281–360 (1994). discussion 360-361.

  • 38.

    Neerinckx, S. et al. Predicting potential risk areas of human plague for the Western Usambara Mountains, Lushoto District, Tanzania. Am. J. Trop. Med. Hyg. 82, 492–500 (2010).

  • 39.

    Bitam, I. et al. New rural focus of plague, Algeria. Emerging Infect. Dis. 16, 1639–1640 (2010).

  • 40.

    Da Costa, E., de, C. V., Sobreira, M., Leal, N. C. & De Almeida, A. M. P. Rodents and other small mammal reservoirs in plague foci in northeastern Brazil. J Infect Dev Ctries 11, 426–430 (2017).

  • 41.

    Ruiz, A. Plague in the Americas. Emerging Infect. Dis. 7, 539–540 (2001).

  • 42.

    Tsuzuki, S. et al. Dynamics of the pneumonic plague epidemic in Madagascar, August to October 2017. Euro Surveill. 22, (2017).

  • 43.

    Grácio, A. J. D. S. & Grácio, M. A. A. Plague: A Millenary Infectious Disease Reemerging in the XXI Century. Biomed Res Int 2017, 5696542 (2017).

  • 44.

    Malek, M. A. et al. Yersinia pestis halotolerance illuminates plague reservoirs. Sci Rep 7, 40022 (2017).

  • 45.

    Ayyadurai, S. et al. Long-term persistence of virulent Yersinia pestis in soil. Microbiology (Reading, Engl.) 154, 2865–2871 (2008).

  • 46.

    Karimi, Y. [NATURAL PRESERVATION OF PLAGUE IN SOIL]. Bull Soc Pathol Exot Filiales 56, 1183–1186 (1963).

  • 47.

    Eisen, R. J. et al. Persistence of Yersinia pestis in soil under natural conditions. Emerging Infect. Dis. 14, 941–943 (2008).

  • 48.

    Kugeler, K. J., Staples, J. E., Hinckley, A. F., Gage, K. L. & Mead, P. S. Epidemiology of human plague in the United States, 1900-2012. Emerging Infect. Dis. 21, 16–22 (2015).

  • 49.

    Kazanjian, P. Frederick Novy and the 1901 San Francisco plague commission investigation. Clin. Infect. Dis. 55, 1373–1378 (2012).

  • 50.

    Centers for Disease Control and Prevention (CDC). Fatal laboratory-acquired infection with an attenuated Yersinia pestis Strain–Chicago, Illinois, 2009. MMWR Morb. Mortal. Wkly. Rep. 60, 201–205 (2011).

    • Google Scholar
  • 51.

    Cookson, J. & Nottingham, J. A Survey of Chemical and Biological Warfare. (Monthly Review Press, 2018).

  • 52.

    Yue, R. P. & Lee, H. F. Pre-industrial plague transmission is mediated by the synergistic effect of temperature and aridity index. BMC infectious diseases 18, 134 (2018).

  • 53.

    Agassi, M., Morin, J. & Shainberg, I. Effect of Raindrop Impact Energy and Water Salinity on Infiltration Rates of Sodic Soils1. Soil Science Society of America Journal 49, 186 (1985).

  • 54.

    Bramanti, B., Stenseth, N. C., Walløe, L. & Lei, X. Plague: A disease which changed the path of human civilization. in Yersinia pestis: retrospective and perspective 1–26 (Springer, 2016).

  • 55.

    Cully, J. F., Barnes, A. M., Quan, T. J. & Maupin, G. Dynamics of plague in a Gunnison’s prairie dog colony complex from New Mexico. J. Wildl. Dis. 33, 706–719 (1997).

  • 56.

    Savage, L. T., Reich, R. M., Hartley, L. M., Stapp, P. & Antolin, M. F. Climate, soils, and connectivity predict plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus). Ecological Applications 21, 2933–2943 (2011).

    • Article
    • Google Scholar
  • 57.

    Hassler, W. C. The Continuance of Plague in San Francisco. Cal State J Med 6, 7–10 (1908).

  • 58.

    Eads, D. A. & Biggins, D. E. Paltry past-precipitation: Predisposing prairie dogs to plague?: Precipitation and Plague in Prairie Dogs. Jour. Wild. Mgmt. 81, 990–998 (2017).

    • Article
    • Google Scholar
  • 59.

    Beltrán, J. M. Irrigation with saline water: benefits and environmental impact. Agricultural Water Management 40, 183–194 (1999).

    • Article
    • Google Scholar
  • 60.

    Duplantier, J.-M., Duchemin, J.-B., Chanteau, S. & Carniel, E. From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet. Res. 36, 437–453 (2005).

  • 61.

    Scudiero, E., Skaggs, T. H. & Corwin, D. L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Regional 2–3, 82–90 (2014).

    • Article
    • Google Scholar
  • 62.

    Ivits, E., Cherlet, M., Tóth, T., Lewińska, K. E. & Tóth, G. CHARACTERISATION OF PRODUCTIVITY LIMITATION OF SALT-AFFECTED LANDS IN DIFFERENT CLIMATIC REGIONS OF EUROPE USING REMOTE SENSING DERIVED PRODUCTIVITY INDICATORS: PRODUCTIVITY LIMITATIONS OF SALT-AFFECTED LANDS. Land Degrad. Develop. n/a-n/a (2013) https://doi.org/10.1002/ldr.1140.

  • 63.

    Scianna, J. Salt-affected soils: their causes, measure, and classification. Res. Method Hort. Note 5, (2002).

  • 64.

    Wichelns, D. & Oster, J. D. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agricultural water management 86, 114–127 (2006).

    • Article
    • Google Scholar
  • 65.

    Deines, J. M., Kendall, A. D. & Hyndman, D. W. Annual irrigation dynamics in the US Northern High Plains derived from Landsat satellite data. Geophysical Research Letters 44, 9350–9360 (2017).

  • 66.

    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).

  • 67.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. The WorldClim interpolated global terrestrial climate surfaces. Version 1.3. (2004).

  • 68.

    Thomas, D. & Middleton, N. World atlas of desertification. (Arnold, 1997).

  • 69.

    Fischer, G. et al. Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy 10, (2008).

  • 70.

    Team, R. C. R: A language and environment for statistical computing. (2013).

  • 71.

    Team, Q. D. QGIS geographic information system. Open Source Geospatial Foundation Project, Versão 2, (2015).

  • 72.

    Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association 74, 829–836 (1979).

  • 73.

    Levin, K. A. Study design VI-ecological studies. Evidence-based dentistry 7, 108 (2006).


  • Source: Ecology - nature.com

    Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications

    Reducing delays in wireless networks