Garroway, C. J. et al. Fine-scale genetic structure in a wild bird population: The role of limited disperal and environmentally based selection as causal factors. Evolution 67, 3488–3500. https://doi.org/10.1111/evo.12121 (2013).
Reudink, M. W. et al. Linking isotopes and panmixia: High within-colony variation in feather δ2H, δ13C, and δ15N across the range of the American White Pelican. PLoS ONE 11, e0150810. https://doi.org/10.1371/journal.pone.0150810 (2016).
Ward, R. D., Skibinski, D. O. & Woodwark, M. Protein heterozygosity, protein structure, and taxonomic differentiation. In Evolutionary Biology, Vol. 26 (eds Hecht M.K., Wallace B., & Macintyre R.J.) 73–159 (Springer, New York, 1992).
White, T. A., Fotherby, H. A., Stephens, P. A. & Hoelzel, A. R. Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106, 690–699. https://doi.org/10.1038/hdy.2010.108 (2011).
Mayr, E. Animal Species and Evolution. (Belknap Press of Harvard University Press, Cambridge, 1963).
Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).
Küpper, C. et al. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 21, 5864–5879 (2012).
Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785. https://doi.org/10.1111/j.1365-294X.2006.03197.x (2007).
Ibarguchi, G., Gaston, A. J. & Friesen, V. L. Philopatry, morphological divergence, and kin groups: Structuring in thick-billed murres Uria lomvia within a colony in Arctic Canada. J. Avian Biol. 42, 134–150. https://doi.org/10.1111/j.1600-048X.2010.05023.x (2011).
Griesser, M. Referential calls signal predator behavior in a group-living bird species. Curr. Biol. 18, 69–73. https://doi.org/10.1016/j.cub.2007.11.069 (2008).
Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).
Innes, R. J. et al. Genetic relatedness and spatial associations of dusky-footed woodrats (Neotoma fuscipes). J. Mammal. 93, 439–446. https://doi.org/10.1644/11-mamm-a-171.1 (2012).
Foerster, K., Valcu, M., Johnsen, A. & Kempenaers, B. A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol. Ecol. 15, 4555–4567. https://doi.org/10.1111/j.1365-294X.2006.03091.x (2006).
Planes, S. & Fauvelot, C. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56, 378–399. https://doi.org/10.1111/j.0014-3820.2002.tb01348.x (2002).
Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).
Ribolli, J. et al. Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv. Genet. 18, 67–76. https://doi.org/10.1007/s10592-016-0882-x (2017).
Weis, A. E. & Kossler, T. M. Genetic variation in flowering time induces phenological assortative mating: Quantitative genetic methods applied to Brassica rapa. Am. J. Bot. 91, 825–836. https://doi.org/10.3732/ajb.91.6.825 (2004).
Coulson, M., Bradbury, I. & Bentzen, P. Temporal genetic differentiation: Continuous v. discontinuous spawning runs in anadromous rainbow smelt Osmerus mordax (Mitchill). J. Fish Biol. 69, 209–216 (2006).
Woody, C. A., Olsen, J., Reynolds, J. & Bentzen, P. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska. Trans. Am. Fish. Soc. 129, 1031–1043 (2000).
Cooley, J. R., Simon, C. & Marshall, D. C. Temporal separation and speciation in periodical cicadas. Bioscience 53, 151–157. https://doi.org/10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 (2003).
Rolshausen, G., Hobson, K. A. & Schaefer, H. M. Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162, 175–183. https://doi.org/10.1007/s00442-009-1445-3 (2009).
Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. Proc. Natl. Acad. Sci. U.S.A. 107, 18589–18594 (2007).
Braga-Silva, A. & Galetti, P. M. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia 765, 159–167. https://doi.org/10.1007/s10750-015-2409-8 (2016).
Schreiber, E. & Burger, J. Biology of Marine Birds (CRC Press, Boca Raton, 2001).
Lawrence, H. A., Lyver, P. O. B. & Gleeson, D. M. Genetic panmixia in New Zealand’s Grey-faced Petrel: Implications for conservation and restoration. Emu 114, 249–258. https://doi.org/10.1071/MU13078 (2014).
Cristofari, R. et al. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds. PLoS ONE 10, e0117981. https://doi.org/10.1371/journal.pone.0117981 (2015).
Avise, J. C., Nelson, W. S., Bowen, B. W. & Walker, D. Phylogeography of colonially nesting seabirds, with special reference to global matrilineal patterns in the sooty tern (Sterna fuscata). Mol. Ecol. 9, 1783–1792 (2000).
Votier, S. C. & Sherley, R. B. Seabirds. Curr. Biol. 27, R448–R450. https://doi.org/10.1016/j.cub.2017.01.042 (2017).
Hughes, B. J., Martin, G. R., Giles, A. D. & Reynolds, S. J. Long-term population trends of Sooty Terns Onychoprion fuscatus: Implications for conservation status. Popul. Ecol. 59, 213–224. https://doi.org/10.1007/s10144-017-0588-z (2017).
Reynolds, S. J. et al. Long-term dietary shift and population decline of a pelagic seabird—A health check on the tropical Atlantic?. Glob. Change Biol. 25, 1383–1394. https://doi.org/10.1111/gcb.14560 (2019).
Schreiber, E. et al. In Birds of North America No. 665 (eds A Poole & F Gill) 1–32 (American Ornithologists’ Union, Washington, DC, 2002).
Maxwell, S. M. & Morgan, L. E. Foraging of seabirds on pelagic fishes: Implications for management of pelagic marine protected areas. Mar. Ecol. Prog. Ser. 481, 289–303 (2013).
Ashmole, N. P. The biology of the Wideawake or Sooty Tern Sterna fuscata on Ascension Island. Ibis 103b, 297–351 (1963).
Hughes, B. J., Martin, G. R. & Reynolds, S. J. Cats and seabirds: Effects of feral Domestic Cat Felis silvestris catus eradication on the population of Sooty Terns Onychoprion fuscata on Ascension Island, South Atlantic. Ibis 150, 122–131. https://doi.org/10.1111/j.1474-919X.2008.00838.x (2008).
ArcGIS Desktop: Release 10.2 (Environmental Systems Research Institute, Redlands, CA, USA, 2013).
Garrett, L. J., Dawson, D. A., Horsburgh, G. J. & Reynolds, S. J. A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus. BMC Res. Notes 10, 756 (2017).
Dawson, D. A. Genomic analysis of passerine birds using conserved microsatellite loci. PhD thesis, University of Sheffield, UK, (2007).
Dawson, D. A., dos Remedios, N. & Horsburgh, G. J. A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers. Zoo Biol. 35, 533–545. https://doi.org/10.1002/zoo.21326 (2016).
Rousset, F. GENEPOP ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).
Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573. https://doi.org/10.1038/nprot.2010.116 (2010).
de Jager, D., Swarts, P., Harper, C. & Bloomer, P. Friends and family: A software program for identification of unrelated individuals from molecular marker data. Mol. Ecol. Resour. 17, e225–e233. https://doi.org/10.1111/1755-0998.12691 (2017).
Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).
Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. 20, 13. https://doi.org/10.1186/s12863-018-0711-y (2019).
Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).
Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2007).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561. https://doi.org/10.1111/1755-0998.12323 (2015).
Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).
Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185. https://doi.org/10.1017/S0016672300033620 (1996).
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).
Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
Smouse, P. E., Peakall, R. O. D. & Gonzales, E. V. A. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 17, 3389–3400. https://doi.org/10.1111/j.1365-294X.2008.03839.x (2008).
Banks, S. C. & Peakall, R. O. D. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol. Ecol. 21, 2092–2105. https://doi.org/10.1111/j.1365-294X.2012.05485.x (2012).
Jacob, G., Prévot, A.-C. & Baudry, E. Feral Pigeons (Columba livia) prefer genetically similar mates despite inbreeding depression. PLoS ONE 11, e0162451. https://doi.org/10.1371/journal.pone.0162451 (2016).
Double, M. C., Peakall, R., Beck, N. R. & Cockburn, A. Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wren (Malurus cyaneus). Evolution 59, 625–635. https://doi.org/10.1111/j.0014-3820.2005.tb01021.x (2005).
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2019).
rcompanion: Functions to support extension education program evaluation (2017).
Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).
Palestis, B. G. The role of behaviour in tern conservation. Curr. Zool. 60, 500–514 (2014).
Lebreton, J. D., Hines, J. E., Pradel, R., Nichols, J. D. & Spendelow, J. A. Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos 101, 253–264. https://doi.org/10.1034/j.1600-0706.2003.11848.x (2003).
Bicknell, A. W. J. et al. Intercolony movement of pre-breeding seabirds over oceanic scales: Implications of cryptic age-classes for conservation and metapopulation dynamics. Divers. Distrib. 20, 160–168. https://doi.org/10.1111/ddi.12137 (2014).
Hughes, B. J., Martin, G. R. & Reynolds, S. J. Sooty Terns Onychoprion fuscatus on Ascension Island in the south Atlantic are a reproductively isolated population. Revista Brasileira de Ornitologia 18, 194–198 (2010).
Robertson, W. B. Jr. Transatlantic migration of juvenile sooty terns. Nature 223, 632–634 (1969).
Peck, D. R. & Congdon, B. C. Reconciling historical processes and population structure in the sooty tern Sterna fuscata. J. Avian Biol. 35, 327–335 (2004).
Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677. https://doi.org/10.1016/j.beproc.2010.03.005 (2010).
Sonsthagen, S. A., Talbot, S. L., Lanctot, R. B. & McCracken, K. G. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck. Mol. Ecol. 19, 647–657. https://doi.org/10.1111/j.1365-294X.2009.04495.x (2010).
Hatchwell, B. J. Cryptic kin selection: Kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).
Péron, G. et al. Capture–recapture models with heterogeneity to study survival senescence in the wild. Oikos 119, 524–532. https://doi.org/10.1111/j.1600-1706.2009.17882.x (2010).
Prince, P. A., Rothery, P., Croxall, J. P. & Wood, A. G. Population dynamics of Black-browed and Grey-headed Albatrosses Diomedea melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 136, 50–71. https://doi.org/10.1111/j.1474-919X.1994.tb08131.x (1994).
Monteiro, L. R. & Furness, R. W. Speciation through temporal segregation of Madeiran storm petrel (Oceanodroma castro) populations in the Azores?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 945–953. https://doi.org/10.1098/rstb.1998.0259 (1998).
Dobson, F. S., Becker, P. H., Arnaud, C. M., Bouwhuis, S. & Charmantier, A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol. Evol. 7, 3100–3109. https://doi.org/10.1002/ece3.2777 (2017).
Casagrande, S., Dell’Omo, G., Costantini, D. & Tagliavini, J. Genetic differences between early-and late-breeding Eurasian kestrels. Evol. Ecol. Res. 8, 1029–1038 (2006).
Danchin, É., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491. https://doi.org/10.1126/science.1098254 (2004).
Boulinier, T., McCoy, K. D., Yoccoz, N. G., Gasparini, J. & Tveraa, T. Public information affects breeding dispersal in a colonial bird: Kittiwakes cue on neighbours. Biol. Lett. 4, 538–540. https://doi.org/10.1098/rsbl.2008.0291 (2008).
Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133. https://doi.org/10.1016/j.anbehav.2016.12.011 (2017).
Reusch, T. B., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. U.S.A. 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).
Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86. https://doi.org/10.1126/science.aan4380 (2018).
Durant, J. M., Krasnov, Y. V., Nikolaeva, N. G. & Stenseth, N. C. Within and between species competition in a seabird community: Statistical exploration and modeling of time-series data. Oecologia 169, 685–694. https://doi.org/10.1007/s00442-011-2226-3 (2012).
Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706. https://doi.org/10.1126/science.1212928 (2011).
Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342. https://doi.org/10.1371/journal.pone.0129342 (2015).
Feare, C. J. & Lesperance, C. Intra- and inter-colony movements of breeding adult Sooty Terns in Seychelles. Waterbirds 25, 52–55. https://doi.org/10.1675/1524-4695(2002)025[0052:IAIMOB]2.0.CO;2 (2002).
Grémillet, D. & Boulinier, T. Spatial ecology and conservation of seabirds facing global climate change: A review. Mar. Ecol. Prog. Ser. 391, 121–137. https://doi.org/10.3354/meps08212 (2009).
Colchero, F., Bass, O. L., Zambrano, R. & Gore, J. A. Clustered nesting and vegetation thresholds reduce egg predation in Sooty Terns. Waterbirds 33, 169–178. https://doi.org/10.1675/063.033.0205 (2010).
Source: Ecology - nature.com